ECON 452* -- NOTE 6

<u>Using Dummy Variable Regressors for Multi-Category Categorical Variables</u>

Dummy Variable Regressors for Multi-Category Variables

- Consider a *four-way* partitioning of a population or sample into four *mutually exclusive* and *exhaustive* industry groups -- *industry 1*, *industry 2*, *industry 3*, and *industry 4*.
 - Let **IN1**_i be the **indicator** (**dummy**) **variable** for *industry 1*:

 $IN1_i = 1$ if observation i is in industry 1 = 0 if observation i is not in industry 1.

• Let **IN2**_i be the **indicator** (dummy) variable for *industry 2*:

 $IN2_i = 1 \text{ if observation i is in industry } 2$ = 0 if observation i is not in industry 2.

• Let **IN3**_i be the **indicator** (dummy) variable for *industry 3*:

 $IN3_i = 1$ if observation i is in industry 3 = 0 if observation i is not in industry 3.

• Let **IN4**_i be the **indicator** (dummy) variable for *industry 4*:

 $IN4_i = 1$ if observation i is in industry 4

= 0 if observation i is not in industry 4.

• Adding-Up Property of the Industry Indicator Variables:

 $IN1_i + IN2_i + IN3_i + IN4_i = 1 \quad \forall i$

• Implications of the Adding-Up Property

Any three of the four industry dummy variables IN1_i, IN2_i, IN3_i and IN4_i completely represents the fourway partitioning of a population and sample into four industry groups.

□ Model 1 -- The Benchmark Model

Contains three regressors in the two explanatory variables X_1 and X_2 , both of which are assumed to be *continuous* variables.

• The population regression equation for Model 1 takes the form

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

• The population regression function, or conditional mean function, for Model 1 takes the form

$$E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2}$$
(1)

• Model 1 does not allow for any coefficient differences among subgroups of the relevant population, such as coefficient differences among industries.

Model 1 assumes that all three regression coefficients β_i (j = 0, 1, 2) are the same for all population members.

Model 1 assumes that the population regression function is the same for all population members.

□ Model 4: Different Industry Intercept Coefficients

Model 4.1 -- Version 1 of Model 4: No Industry Base Group

Allows for **different** *industry intercepts* by introducing all four industry dummy variables IN1_i, IN2_i, IN3_i, and IN4_i as additional additive regressors in Model 1.

• The population regression equation for Model 4.1 is:

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$
(4.1)

The distinguishing characteristic of Model 4.1 is that it contains **no** *intercept coefficient*. That is because there is no industry base group in Model 4.1.

• The **population regression function**, or conditional mean function, **for Model 4.1** is obtained by taking the conditional expectation of regression equation (4.1) for any given values of the regressors X_{i1}, X_{i2}, IN1_i, IN2_i, IN3_i, and IN4_i:

$$E(Y_{i} | X_{i1}, X_{i2}, IN1_{i}, IN2_{i}, IN3_{i}, IN4_{i}) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i}$$
(4.1)

• The **population regression function**, or CMF, **for** *industry 1* implied by Model 4.1 is obtained by setting the industry 1 indicator variable $IN1_i = 1$ in (4.1'), which implies that $IN2_i = 0$ and $IN3_i = 0$ and $IN4_i = 0$:

$$E(Y_{i} | X_{i1}, X_{i2}, INI_{i} = 1) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1} = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2}$$

The *industry 1 intercept* coefficient = ϕ_1 .

$$E(Y_{i} | X_{i1}, X_{i2}, INI_{i}, IN2_{i}, IN3_{i}, IN4_{i}) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i}$$
(4.1)

• The **population regression function for** *industry 2* implied by Model 4.1 is obtained by setting the industry 2 indicator variable $IN2_i = 1$ in (4.1'), which implies that $IN1_i = 0$ and $IN3_i = 0$ and $IN4_i = 0$:

 $E(Y_{i} | X_{i1}, X_{i2}, IN2_{i} = 1) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{2} = \phi_{2} + \beta_{1}X_{i1} + \beta_{2}X_{i2}$

The *industry 2 intercept* coefficient = ϕ_2 .

• The **population regression function for** *industry 3* implied by Model 4.1 is obtained by setting the industry 3 indicator variable $IN3_i = 1$ in (4.1'), which implies that $IN1_i = 0$ and $IN2_i = 0$ and $IN4_i = 0$:

 $E(Y_{i} | X_{i1}, X_{i2}, IN3_{i} = 1) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{3} = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2}$

The *industry 3 intercept* coefficient = ϕ_3 .

• The **population regression function for** *industry 4* implied by Model 4.1 is obtained by setting the industry 4 indicator variable $IN4_i = 1$ in (4.1'), which implies that $IN1_i = 0$ and $IN2_i = 0$ and $IN3_i = 0$:

 $E(Y_{i} | X_{i1}, X_{i2}, IN4_{i} = 1) = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{4} = \phi_{4} + \beta_{1}X_{i1} + \beta_{2}X_{i2}$

The *industry 4 intercept* coefficient = ϕ_4 .

• *Hypothesis Test:* Test the proposition that there are **no differences in mean Y** *across industries* for population members with given values of X₁ and X₂. There are **no** *inter-industry* **differences** in the conditional mean values of Y for given values of X₁ and X₂.

In terms of the regression coefficients in Model 4.1, this hypothesis states that the *four* industry coefficients ϕ_1 , ϕ_2 , ϕ_3 , and ϕ_4 are *all equal*.

- The *null* and *alternative* hypotheses are as follows:
 - H₀: $\phi_2 = \phi_1 \text{ and } \phi_3 = \phi_1 \text{ and } \phi_4 = \phi_1$ $\phi_2 - \phi_1 = 0 \text{ and } \phi_3 - \phi_1 = 0 \text{ and } \phi_4 - \phi_1 = 0$
 - $$\begin{split} H_1: \quad & \varphi_2 \neq \varphi_1 \text{ and/or } \varphi_3 \neq \varphi_1 \text{ and/or } \varphi_4 \neq \varphi_1 \\ & \varphi_2 \varphi_1 \neq 0 \text{ and/or } \varphi_3 \varphi_1 \neq 0 \text{ and/or } \varphi_4 \varphi_1 \neq 0 \end{split}$$
- The *restricted* model implied by the null hypothesis H_0 is obtained by imposing on Model 4.1 (the unrestricted model) the coefficient restrictions specified by H_0 .

Model 4.1, the unrestricted model, is:

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$
(4.1)

The *restricted* model is obtained by setting $\phi_2 = \phi_1$ and $\phi_3 = \phi_1$ and $\phi_4 = \phi_1$ in Model 4.1:

$$\mathbf{Y}_{i} = \beta_{1}\mathbf{X}_{i1} + \beta_{2}\mathbf{X}_{i2} + \phi_{1}\mathbf{IN1}_{i} + \phi_{1}\mathbf{IN2}_{i} + \phi_{1}\mathbf{IN3}_{i} + \phi_{1}\mathbf{IN4}_{i} + \mathbf{u}_{i}$$

i.e.,

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}(IN1_{i} + IN2_{i} + IN3_{i} + IN4_{i}) + u_{i}$$

$$= \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1} + u_{i}$$

$$= \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$

(1)

• The *test statistic* appropriate for this hypothesis test is a **Wald F-statistic**.

Model 4.2 -- Version 2 of Model 4: Base Group is Industry 1

Model 4.2 allows for **different** *industry intercepts* by introducing the three industry dummy variables $IN2_i$, $IN3_i$, and $IN4_i$ as additional additive regressors in Model 1. The *industry* **base group in Model 4.2 is** *industry* **1**. The **industry 1 dummy variable IN1_i is** *excluded* from the regressor set.

• The population regression equation for Model 4.2 is:

$$Y_{i} = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i} + u_{i}$$
(4.2)

• The **population regression function**, or conditional mean function, **for Model 4.2** is obtained by taking the conditional expectation of regression equation (4.2) for any given values of the regressors X_{i1}, X_{i2}, IN2_i, IN3_i, and IN4_i:

$$E(Y_{i} | X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i}$$
(4.2)

• The **population regression function**, or CMF, **for** *industry* **1** -- the industry base group -- in Model 4.2 is obtained by setting all three included industry dummy variables in (4.2') equal to zero, i.e., by setting $IN2_i = 0$ and $IN3_i = 0$ and $IN4_i = 0$ in (4.2'):

 $E(Y_i | X_{i1}, X_{i2}, INl_i = 1)$

 $= E(Y_i | X_{i1}, X_{i2}, IN2_i = 0, IN3_i = 0, IN4_i = 0) = \phi_1 + \beta_1 X_{i1} + \beta_2 X_{i2}$

The *industry 1 intercept* coefficient = ϕ_1 = the equation intercept coefficient

$$E(Y_{i} | X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i}$$
(4.2)

• The **population regression function for** *industry 2* implied by Model 4.2 is obtained by setting the industry 2 dummy variable $IN2_i = 1$ in (4.2'), which by definition requires that $IN3_i = 0$ and $IN4_i = 0$ in (4.2'):

$$E(Y_i | X_{i1}, X_{i2}, IN2_i = 1) = E(Y_i | X_{i1}, X_{i2}, IN2_i = 1, IN3_i = 0, IN4_i = 0)$$

= $\phi_1 + \beta_1 X_{i1} + \beta_2 X_{i2} + \psi_2$
= $(\phi_1 + \psi_2) + \beta_1 X_{i1} + \beta_2 X_{i2}$

The *industry 2 intercept* coefficient = $\phi_1 + \psi_2$ The *industry 1 intercept* coefficient = ϕ_1

Therefore, the IN2_i coefficient ψ_2 in Model 4.2 is:

 $\psi_2 = industry \ 2 \ intercept \ coefficient - industry \ 1 \ intercept \ coefficient$

$$E(Y_{i} | X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i}$$
(4.2)

• The **population regression function for** *industry 3* implied by Model 4.2 is obtained by setting the industry 3 dummy variable $IN3_i = 1$ in (4.2'), which by definition requires that $IN2_i = 0$ and $IN4_i = 0$ in (4.2'):

$$E(Y_i | X_{i1}, X_{i2}, IN3_i = 1) = E(Y_i | X_{i1}, X_{i2}, IN2_i = 0, IN3_i = 1, IN4_i = 0)$$
$$= \phi_1 + \beta_1 X_{i1} + \beta_2 X_{i2} + \psi_3$$
$$= (\phi_1 + \psi_3) + \beta_1 X_{i1} + \beta_2 X_{i2}$$

The *industry 3 intercept* coefficient = $\phi_1 + \psi_3$ The *industry 1 intercept* coefficient = ϕ_1

Therefore, the IN3_i coefficient ψ_3 in Model 4.2 is:

 $\psi_3 = industry \ 3 \ intercept \ coefficient - industry \ 1 \ intercept \ coefficient$

$$E(Y_{i} | X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i}$$
(4.2)

• The **population regression function for** *industry 4* implied by Model 4.2 is obtained by setting the industry 4 dummy variable $IN4_i = 1$ in (4.2'), which by definition requires that $IN2_i = 0$ and $IN3_i = 0$ in (4.2'):

$$E(Y_i | X_{i1}, X_{i2}, IN4_i = 1) = E(Y_i | X_{i1}, X_{i2}, IN2_i = 0, IN3_i = 0, IN4_i = 1)$$

= $\phi_1 + \beta_1 X_{i1} + \beta_2 X_{i2} + \psi_4$
= $(\phi_1 + \psi_4) + \beta_1 X_{i1} + \beta_2 X_{i2}$

The *industry 4 intercept* coefficient = $\phi_1 + \psi_4$ The *industry 1 intercept* coefficient = ϕ_1

Therefore, the IN4_i coefficient ψ_4 in Model 4.2 is:

 $\psi_4 = industry \ 4 \ intercept \ coefficient - industry \ 1 \ intercept \ coefficient$

• *Hypothesis Test:* Test the proposition that there are **no differences in mean Y** *across industries* for population members with given values of X₁ and X₂. There are **no** *inter-industry* **differences** in the conditional mean values of Y for given values of X₁ and X₂.

In Model 4.2, this hypothesis requires that the *three* industry coefficients ψ_2 , ψ_3 , and ψ_4 are all zero.

The *null* and *alternative* hypotheses are as follows:

$$\begin{aligned} H_0: \quad \psi_2 &= 0 \ and \ \psi_3 &= 0 \ and \ \psi_4 &= 0 \\ \varphi_2 &- \varphi_1 &= 0 \ and \ \varphi_3 &- \varphi_1 &= 0 \ and \ \varphi_4 &- \varphi_1 &= 0 \end{aligned}$$

- H₁: $\psi_2 \neq 0$ and/or $\psi_3 \neq 0$ and/or $\psi_4 \neq 0$ $\phi_2 - \phi_1 \neq 0$ and/or $\phi_3 - \phi_1 \neq 0$ and/or $\phi_4 - \phi_1 \neq 0$
- The *restricted* model implied by the null hypothesis H_0 is obtained by imposing on Model 4.2 (the unrestricted model) the coefficient restrictions specified by H_0 .

Model 4.2, the unrestricted model, is:

$$Y_{i} = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i} + u_{i}$$
(4.2)

The *restricted* model is obtained by setting $\psi_2 = 0$ and $\psi_3 = 0$ and $\psi_4 = 0$ in Model 4.2:

$$Y_{i} = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

• The *test statistic* appropriate for this hypothesis test is a **Wald F-statistic**.

Model 4.3 -- Version 3 of Model 4: Base Group is Industry 3

Model 4.3 allows for **different** *industry intercepts* by introducing the three industry dummy variables $IN1_i$, $IN2_i$, and $IN4_i$ as additional additive regressors in Model 1. The *industry* **base group in Model 4.3 is** *industry 3*. The industry 3 dummy variable $IN3_i$ is excluded from the regressor set.

• The population regression equation for Model 4.3 is:

$$Y_{i} = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i} + u_{i}$$
(4.3)

• The **population regression function**, or conditional mean function, **for Model 4.3** is obtained by taking the conditional expectation of regression equation (4.3) for any given values of the regressors X_{i1}, X_{i2}, IN1_i, IN2_i, and IN4_i:

$$E(Y_{i} | X_{i1}, X_{i2}, INI_{i}, IN2_{i}, IN4_{i}) = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}INI_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i}$$
(4.3)

• The **population regression function for** *industry* **3** -- the industry base group -- in Model 4.3 is obtained by setting all three included industry dummy variables in (4.3') equal to zero, i.e., by setting $IN1_i = 0$ and $IN2_i = 0$ and $IN4_i = 0$ in (4.3'):

$$E(Y_i | X_{i1}, X_{i2}, IN3_i = 1) = E(Y_i | X_{i1}, X_{i2}, IN1_i = 0, IN2_i = 0, IN4_i = 0)$$

$$= \phi_3 + \beta_1 X_{i1} + \beta_2 X_{i2}$$

The *industry 3 intercept* coefficient = ϕ_3 = the equation intercept coefficient

$$E(Y_{i} | X_{i1}, X_{i2}, IN1_{i}, IN2_{i}, IN4_{i}) = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i}$$
(4.3)

• The population regression function for *industry 1* in Model 4.3 is obtained by setting $IN1_i = 1$ and $IN2_i = 0$ and $IN4_i = 0$ in equation (4.3'):

$$E(Y_i | X_{i1}, X_{i2}, IN1_i = 1) = E(Y_i | X_{i1}, X_{i2}, IN1_i = 1, IN2_i = 0, IN4_i = 0)$$

= $\phi_3 + \beta_1 X_{i1} + \beta_2 X_{i2} + \omega_1$
= $(\phi_3 + \omega_1) + \beta_1 X_{i1} + \beta_2 X_{i2}$

The *industry 1 intercept* coefficient = $\phi_3 + \omega_1$ The *industry 3 intercept* coefficient = ϕ_3

Therefore, the $IN1_i$ coefficient ω_1 in Model 4.3 is:

 ω_1 = *industry 1 intercept* coefficient – *industry 3 intercept* coefficient

$$E(Y_{i} | X_{i1}, X_{i2}, IN1_{i}, IN2_{i}, IN4_{i}) = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i}$$
(4.3)

• The **population regression function for** *industry 2* implied by Model 4.3 is obtained by setting the industry 2 dummy variable $IN2_i = 1$ in (4.3'), which by definition requires that $IN1_i = 0$ and $IN4_i = 0$ in (4.3'):

$$E(Y_{i} | X_{i1}, X_{i2}, IN2_{i} = 1) = E(Y_{i} | X_{i1}, X_{i2}, IN1_{i} = 0, IN2_{i} = 1, IN4_{i} = 0)$$
$$= \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{2}$$
$$= (\phi_{3} + \omega_{2}) + \beta_{1}X_{i1} + \beta_{2}X_{i2}$$

The *industry 2 intercept* coefficient = $\phi_3 + \omega_2$ The *industry 3 intercept* coefficient = ϕ_3

Therefore, the $IN2_i$ coefficient ω_2 in Model 4.3 is:

 $\omega_2 = industry \ 2 \ intercept \ coefficient - industry \ 3 \ intercept \ coefficient$

$$E(Y_{i} | X_{i1}, X_{i2}, IN1_{i}, IN2_{i}, IN4_{i}) = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i}$$
(4.3)

• The **population regression function for** *industry 4* implied by Model 4.3 is obtained by setting the industry 4 dummy variable $IN4_i = 1$ in (4.3'), which by definition requires that $IN1_i = 0$ and $IN2_i = 0$ in (4.3'):

$$E(Y_{i} | X_{i1}, X_{i2}, IN4_{i} = 1) = E(Y_{i} | X_{i1}, X_{i2}, IN1_{i} = 0, IN2_{i} = 0, IN4_{i} = 1)$$
$$= \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{4}$$
$$= (\phi_{3} + \omega_{4}) + \beta_{1}X_{i1} + \beta_{2}X_{i2}$$

The *industry 4 intercept* coefficient = $\phi_3 + \omega_4$ The *industry 3 intercept* coefficient = ϕ_3

Therefore, the IN4_i coefficient ω_4 in Model 4.3 is:

 $\omega_4 = industry \ 4 \ intercept \ coefficient - industry \ 3 \ intercept \ coefficient$

• *Hypothesis Test:* Test the proposition that there are no differences in mean Y across industries for population members with given values of X_1 and X_2 . There are **no** *inter-industry* **differences** in the conditional mean values of Y for given values of X_1 and X_2 .

In Model 4.3, this hypothesis requires that the *three* industry coefficients ω_1 , ω_2 , and ω_4 are *all zero*.

The *null* and *alternative* hypotheses are as follows:

$$\begin{split} H_0: \quad & \omega_1=0 \text{ and } \omega_2=0 \text{ and } \omega_4=0 \\ & \varphi_1-\varphi_3=0 \text{ and } \varphi_2-\varphi_3=0 \text{ and } \varphi_4-\varphi_3=0 \end{split}$$

- H₁: $\omega_1 \neq 0$ and/or $\omega_2 \neq 0$ and/or $\omega_4 \neq 0$ $\phi_1 - \phi_3 \neq 0$ and/or $\phi_2 - \phi_3 \neq 0$ and/or $\phi_4 - \phi_3 \neq 0$
- The *restricted* model implied by the null hypothesis H_0 is obtained by imposing on Model 4.3 (the unrestricted model) the coefficient restrictions specified by H_0 .

Model 4.3, the unrestricted model, is:

$$Y_{i} = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i} + u_{i}$$
(4.3)

The *restricted* model is obtained by setting $\omega_1 = 0$ and $\omega_2 = 0$ and $\omega_4 = 0$ in Model 4.3:

$$\mathbf{Y}_{i} = \phi_{3} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \mathbf{u}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \mathbf{u}_{i}$$
(1)

• The *test statistic* appropriate for this hypothesis test is a **Wald F-statistic**.

Compare Models 4.1, 4.2 and 4.3 – They are Observationally Equivalent

• The population regression equation for Model 4.1 is:

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$
(4.1)

Test for *industry effects* in Model 4.1: a joint F-test of

- H₀: $\phi_2 = \phi_1 \text{ and } \phi_3 = \phi_1 \text{ and } \phi_4 = \phi_1$ $\phi_2 - \phi_1 = 0 \text{ and } \phi_3 - \phi_1 = 0 \text{ and } \phi_4 - \phi_1 = 0$
- $\begin{aligned} H_1: \quad & \phi_2 \neq \phi_1 \text{ and/or } \phi_3 \neq \phi_1 \text{ and/or } \phi_4 \neq \phi_1 \\ & \phi_2 \phi_1 \neq 0 \text{ and/or } \phi_3 \phi_1 \neq 0 \text{ and/or } \phi_4 \phi_1 \neq 0 \end{aligned}$
- The population regression equation for Model 4.2 is:

$$Y_{i} = \phi_{1} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \psi_{2}IN2_{i} + \psi_{3}IN3_{i} + \psi_{4}IN4_{i} + u_{i}$$
(4.2)

Test for industry effects in Model 4.2: a joint F-test of

- H₀: $\psi_2 = 0$ and $\psi_3 = 0$ and $\psi_4 = 0$
- H₁: $\psi_2 \neq 0$ and/or $\psi_3 \neq 0$ and/or $\psi_4 \neq 0$

• The population regression equation for Model 4.3 is:

$$Y_{i} = \phi_{3} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \omega_{1}IN1_{i} + \omega_{2}IN2_{i} + \omega_{4}IN4_{i} + u_{i}$$
(4.3)

Test for *industry effects* in Model 4.3: a joint F-test of

- H₀: $\omega_1 = 0$ and $\omega_2 = 0$ and $\omega_4 = 0$
- H₁: $\omega_1 \neq 0$ and/or $\omega_2 \neq 0$ and/or $\omega_4 \neq 0$
- □ <u>*Result:*</u> These three F-tests for industry effects are *identical*; they yield exactly the same sample value F_0 of the general F-statistic, and hence yield identical inferences about the presence or absence of industry effects on the conditional mean value of Y for given values of X_1 and X_2 .

□ Model 5: Models with Several Discrete/Categorical Explanatory Variables

Consider a linear regression model in which **two or more explanatory variables** are *discrete* or *categorical* **variables**.

To illustrate, suppose the two discrete explanatory variables are *gender* and *industry*.

• *Gender* can be represented by means of the following <u>two</u> dummy variables:

F_i is a *female* indicator (dummy) variable, defined as follows:

 $F_i = 1$ if observation i is female, = 0 if observation i is not female.

M_i is a *male* indicator (dummy) variable, defined as follows:

 $M_i = 1$ if observation i is male, = 0 if observation i is not male.

Adding-Up Property of the Gender Indicator Variables F_i and M_i

 $F_i + M_i \ = 1 \qquad \forall \ i$

• *Industry* can be represented by means of the following *industry* **dummy** variables (assuming a four-level categorization of the variable industry):

 $IN1_i = 1$ if observation i is in industry 1, = 0 otherwise.

 $IN2_i = 1$ if observation i is in industry 2, = 0 otherwise.

 $IN3_i = 1$ if observation i is in industry 3, = 0 otherwise.

 $IN4_i = 1$ if observation i is in industry 4, = 0 otherwise.

Adding-Up Property of the Industry Indicator Variables:

 $IN1_i + IN2_i + IN3_i + IN4_i = 1 \quad \forall i$

Model 1 -- The Benchmark Model

Contains two regressors in the two explanatory variables X_1 and X_2 , both of which are assumed to be continuous variables.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

• The population regression function, or conditional mean function, for Model 1 takes the form

$$E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2}$$
(1)

• Model 1 assumes that the **population regression function** is the same for all population members. For example, it allows no gender or industry differences in any of the regression coefficients β_i (j = 0, 1, 2).

Model 5.1 -- Version 1 of Model 5: No Gender or Industry Base Group

Allows for **different** *male* and *female intercepts* by introducing both the gender dummy variables F_i and M_i as additional additive regressors in Model 1.

Allows for **different** *industry intercepts* by introducing all four industry dummy variables IN1_i, IN2_i, IN3_i, and IN4_i as additional additive regressors in Model 1.

• The population regression equation for Model 5.1 is:

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \theta_{f}F_{i} + \theta_{m}M_{i} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$
(5.1)

The distinguishing characteristic of Model 5.1 is that it contains **no equation** *intercept coefficient*. That is because there is **no base group** in Model 5.1 for either gender or industry.

• **<u>Problem with Model 5.1</u>**: It violates the **full rank assumption A5**. It exhibits *perfect multicollinearity*.

Reason:

The two gender dummy variables by definition satisfy the adding-up property

 $F_i + M_i = 1 \quad \forall i$

The four *industry* dummy variables by definition satisfy the same adding-up property:

 $IN1_i + IN2_i + IN3_i + IN4_i = 1 \quad \forall i$

• <u>Estimation Strategies for Model 5</u>: There are at least two alternative strategies that can be adopted to make Model 5 susceptible to estimation.

Strategy 1: Select a base group for each of the categorical variables gender and industry, and reformulate Model 5 accordingly.

Strategy 2: Introduce an equation intercept coefficient in regression equation 5.1, and use **restricted OLS estimation** to estimate the resulting equation subject to two linear coefficient restrictions: one on the coefficients of the gender dummy variables; and another on the coefficients of the industry dummy variables.

Estimate by restricted (constrained) OLS the regression equation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \theta_f F_i + \theta_m M_i + \phi_1 IN1_i + \phi_2 IN2_i + \phi_3 IN3_i + \phi_4 IN4_i + u_i$$

subject to the two linear coefficient restrictions

$\theta_{\rm f} + \theta_{\rm m} = 0$	(c1)
---------------------------------------	------

$$\phi_1 + \phi_2 + \phi_3 + \phi_4 = 0 \tag{c2}$$

Model 5.2 -- Version 2 of Model 5: Base Groups for Gender and Industry

Derivation of Model 5.2

• Select *males* as the base group for *gender*.

Substitute for the male dummy variable M_i in equation (5.1) the equivalent expression

 $M_i = 1 - F_i \qquad \forall i$

• Select *industry 1* as the base group for *industry*.

Substitute for the industry 1 dummy variable $IN1_i$ in equation (5.1) the equivalent expression

$$IN1_i = 1 - IN2_i - IN3_i - IN4_i \quad \forall i$$

• Make these substitutions in regression equation (5.1):

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \theta_{f}F_{i} + \theta_{m}M_{i} + \phi_{1}IN1_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$

$$= \beta_{1}X_{i1} + \beta_{2}X_{i2} + \theta_{f}F_{i} + \theta_{m}(1 - F_{i}) + \phi_{1}(1 - IN2_{i} - IN3_{i} - IN4_{i}) + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$

$$= \beta_{1}X_{i1} + \beta_{2}X_{i2} + \theta_{f}F_{i} + \theta_{m} - \theta_{m}F_{i} + \phi_{1} - \phi_{1}IN2_{i} - \phi_{1}IN3_{i} - \phi_{1}IN4_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i}$$
(5.1)

Now **collect terms**: there are two constant terms, two terms in F_i , two terms in $IN2_i$, two terms in $IN3_i$, and two terms in $IN4_i$.

$$Y_{i} = \beta_{1}X_{i1} + \beta_{2}X_{i2} + \theta_{f}F_{i} + \theta_{m} - \theta_{m}F_{i} + \phi_{1} - \phi_{1}IN2_{i} - \phi_{1}IN3_{i} - \phi_{1}IN4_{i} + \phi_{2}IN2_{i} + \phi_{3}IN3_{i} + \phi_{4}IN4_{i} + u_{i} = (\theta_{m} + \phi_{1}) + \beta_{1}X_{i1} + \beta_{2}X_{i2} + (\theta_{f} - \theta_{m})F_{i} + (\phi_{2} - \phi_{1})IN2_{i} + (\phi_{3} - \phi_{1})IN3_{i} + (\phi_{4} - \phi_{1})IN4_{i} + u_{i}$$
(5.2)

- Re-name some of the coefficients in regression equation (5.2). Define
 - $$\begin{split} \beta_0 &= \theta_m + \phi_1 \\ \lambda_f &= \theta_f \theta_m \\ \pi_2 &= \phi_2 \phi_1 \\ \pi_3 &= \phi_3 \phi_1 \\ \pi_4 &= \phi_4 \phi_1 \end{split}$$
- *<u>Result</u>*: The population regression *equation* for Model 5.2, equation (5.2), can be written as

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f}F_{i} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i} + u_{i}$$
(5.2)

• Interpretation of the coefficients in Model 5.2

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f}F_{i} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i} + u_{i}$$
(5.2)

 $\begin{array}{ll} \beta_0 = \theta_m + \phi_1 & = \mbox{ intercept for males in industry 1} \\ \lambda_f = \theta_f - \theta_m & = \mbox{ female intercept - male intercept} \\ \pi_2 = \phi_2 - \phi_1 & = \mbox{ industry 2 intercept - industry 1 intercept} \\ \pi_3 = \phi_3 - \phi_1 & = \mbox{ industry 3 intercept - industry 1 intercept} \end{array}$

 $\pi_4 = \phi_4 - \phi_1$ = industry 4 intercept – industry 1 intercept

• Key Features of Model 5.2

The omitted base group for gender is males, and for industry is industry 1.

The male indicator variable M_i and the industry 1 indicator variable $IN1_i$ are excluded from the regressor set of Model 5.2.

Model 5.2 allows for both different male and female intercepts and different industry intercepts.

Model 5.2 constrains the slope coefficients β_1 and β_2 on the continuous regressors X_{i1} and X_{i2} to be the same both **for** *males and females* and **for all four** *industry groups*.

• The **population regression** *function* for Model 5.2 is obtained by taking the conditional expectation of regression equation (5.2) for any given values of the regressors X_{i1} , X_{i2} , F_i , $IN2_i$, $IN3_i$, and $IN4_i$, and using the zero conditional mean error assumption $E(u_i | X_{i1}, X_{i2}, F_i, IN2_i, IN3_i, IN4_i) = 0$ for all i:

 $E(Y_{i} | X_{i1}, X_{i2}, F_{i}, IN2_{i}, IN3_{i}, IN4_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f}F_{i} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$ (5.2)

• The *female* population regression function for Model 5.2 is obtained by setting the female indicator F_i = 1 in (5.2'):

$$E(Y_{i} | F_{i} = 1, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i})$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$

$$= \beta_{0} + \lambda_{f} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$
(5.2f)

The female population regression function gives the *female* conditional mean Y value for *given* values of the regressors X_1 , X_2 , IN2, IN3, and IN4.

• The *male* population regression function for Model 5.2 is obtained by setting the female indicator $F_i = 0$ in (5.2'):

$$E(Y_{i} | F_{i} = 0, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$
(5.2m)

The male population regression function gives the *male* conditional mean Y value for *given* values of the regressors X_1 , X_2 , IN2, IN3, and IN4.

$$E(Y_{i} | F_{i} = 1, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i})$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$

$$= \beta_{0} + \lambda_{f} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$

$$E(Y_{i} | F_{i} = 0, X_{i1}, X_{i2}, IN2_{i}, IN3_{i}, IN4_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$
(5.2f)
$$(5.2m)$$

Compare the *female* and *male* population regression functions for Model 5.2:
 Only the *intercept coefficient* differs between the male and female regression functions implied by Model 5.2.
 The *slope coefficients* are all identical in the male and female regression functions for Model 5.2.

• The *female-male difference* in conditional mean Y for given values of the regressors is obtained by subtracting the male population regression function (5.2m) from the female population regression function (5.2f):

Define the 1×6 row vector $\mathbf{x}_{i}^{T} = \begin{bmatrix} X_{i1} & X_{i2} & IN2_{i} & IN3_{i} & IN4_{i} \end{bmatrix}$ containing the values of the regressors X_{1}, X_{2} , IN2, IN3, and IN4 for observation i.

Then the *difference* between the *female* conditional mean Y for *given* values of the regressors X_1 , X_2 , IN2, IN3, and IN4 and the *male* conditional mean Y for the *same* values of the regressors X_1 , X_2 , IN2, IN3, and IN4 is:

$$E(Y_{i} | F_{i} = I, X_{i}) - E(Y_{i} | F_{i} = 0, X_{i})$$

$$= \beta_{0} + \lambda_{f} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$

$$- (\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i})$$

$$= \beta_{0} + \lambda_{f} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i}$$

$$- \beta_{0} - \beta_{1}X_{i1} - \beta_{2}X_{i2} - \pi_{2}IN2_{i} - \pi_{3}IN3_{i} - \pi_{4}IN4_{i}$$

$$= \lambda_{f}$$
(5.2*)

Note: The *female-male difference* in the conditional mean value of **Y** for given values of the regressors X_{i1} , X_{i2} , $IN2_i$, $IN3_i$, and $IN4_i$ is *a constant*; it does not depend on the values of the regressors X_1 and X_2 or on industry.

 $\mathbf{E}(\mathbf{X} \mid \mathbf{E} \mid \mathbf{1} \mid \mathbf{T}) = \mathbf{E}(\mathbf{X} \mid \mathbf{E} \mid \mathbf{0} \mid \mathbf{T})$

• Interpretation of the coefficients in Model 5.2

Rewrite the **population regression** *equation* **for Model 5.2**:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \lambda_{f}F_{i} + \pi_{2}IN2_{i} + \pi_{3}IN3_{i} + \pi_{4}IN4_{i} + u_{i}$$
(5.2)

β_0	= intercept for <i>males</i> in industry 1
$\beta_0 + \lambda_{\rm f}$	= intercept for <i>females</i> in industry 1
λ_{f}	= <i>female</i> industry 1 intercept – <i>male</i> industry 1 intercept
$\beta_0 + \pi_2$	= intercept for <i>males</i> in industry 2
$\beta_0 + \lambda_{\rm f} + \pi_2$	= intercept for <i>females</i> in industry 2
λ_{f}	= <i>female</i> industry 2 intercept – <i>male</i> industry 2 intercept
$\beta_0 + \pi_3$	= intercept for <i>males</i> in industry 3
$\begin{split} \beta_0 &+ \pi_3 \\ \beta_0 &+ \lambda_{\rm f} + \pi_3 \end{split}$	 intercept for <i>males</i> in industry 3 intercept for <i>females</i> in industry 3
$\begin{split} \beta_0 + \pi_3 \\ \beta_0 + \lambda_f + \pi_3 \\ \lambda_f \end{split}$	 = intercept for <i>males</i> in industry 3 = intercept for <i>females</i> in industry 3 = <i>female</i> industry 3 intercept – <i>male</i> industry 3 intercept
$\begin{aligned} \beta_0 &+ \pi_3 \\ \beta_0 &+ \lambda_f + \pi_3 \\ \lambda_f \\ \beta_0 &+ \pi_4 \end{aligned}$	 = intercept for <i>males</i> in industry 3 = intercept for <i>females</i> in industry 3 = <i>female</i> industry 3 intercept – <i>male</i> industry 3 intercept = intercept for <i>males</i> in industry 4
$\beta_0 + \pi_3$ $\beta_0 + \lambda_f + \pi_3$ λ_f $\beta_0 + \pi_4$ $\beta_0 + \lambda_f + \pi_4$	 = intercept for <i>males</i> in industry 3 = intercept for <i>females</i> in industry 3 = <i>female</i> industry 3 intercept – <i>male</i> industry 3 intercept = intercept for <i>males</i> in industry 4 = intercept for <i>females</i> in industry 4

- π_2 = *male* industry 2 intercept *male* industry 1 intercept
 - = *female* industry 2 intercept *female* industry 1 intercept
- $\pi_3 = male \text{ industry 3 intercept} male \text{ industry 1 intercept}$
 - = *female* industry 3 intercept *female* industry 1 intercept
- π_4 = *male* industry 4 intercept *male* industry 1 intercept
 - = *female* industry 4 intercept *female* industry 1 intercept

Inter-industry differences in the conditional mean value of Y are *equal* for *males* and *females*. The effects of industry on Y are identical for males and females in Model 5.2.