ECON 452* -- NOTE 5

Using Dummy Variable Regressors for Two-Category Categorical Variables

\square Nature and Properties of Indicator (Dummy) Variables

- Indicator (or dummy) variables are binary variables -- i.e., variables that take only two values.

The value $\mathbf{1}$ indicates the presence of some characteristic or attribute.
The value $\mathbf{0}$ indicates the absence of that same characteristic or attribute.

- Consider a two-way partitioning of a population or sample into two mutually exclusive and exhaustive subsets or groups -- females and males.
- Let $\mathbf{F}_{\mathbf{i}}$ be the female indicator (dummy) variable, defined as follows:
$F_{i}=1$ if observation i is female
$=0$ if observation i is not female.
- Let $\mathbf{M}_{\mathbf{i}}$ be the male indicator (dummy) variable, defined as follows:
$\mathrm{M}_{\mathrm{i}}=1$ if observation i is male
$=0$ if observation i is not male.

- Adding-Up Property of the Indicator Variables $\mathbf{F}_{\mathbf{i}}$ and $\mathbf{M}_{\mathbf{i}}$

For each and every i (population member or sample observation):

$$
\text { if } F_{i}=1 \text { then } M_{i}=0
$$

and
if $\mathrm{M}_{\mathrm{i}}=1$ then $\mathrm{F}_{\mathrm{i}}=0$.
The definition of the indicator variables F_{i} and M_{i} thus implies that they satisfy the following adding-up property:

$$
\mathbf{F}_{\mathbf{i}}+\mathbf{M}_{\mathbf{i}}=\mathbf{1} \quad \forall \mathbf{i}
$$

- Implications of the Adding-Up Property

1. Only one of the two dummy variables F_{i} and M_{i} is required to completely represent the two-way partitioning of a population and sample into females and males.

- given M_{i} values, the adding-up property implies that $\mathrm{F}_{\mathrm{i}}=1-\mathrm{M}_{\mathrm{i}}$.
- given F_{i} values, the adding-up property implies that $M_{i}=1-F_{i}$.

2. General Rule: A categorical variable with \mathbf{n} categories can be completely represented by a set of $\mathbf{n - 1}$ indicator (dummy) variables.

The general adding-up property states that

$$
\mathrm{D} 1_{\mathrm{i}}+\mathrm{D} 2_{\mathrm{i}}+\mathrm{D} 3_{\mathrm{i}}+\cdots+\mathrm{Dn} n_{\mathrm{i}}=1 \quad \forall \mathrm{i} .
$$

- Example: Consider a categorical variable INDUSTRY ${ }_{i}$ representing individual employees' industry sector of employment. INDUSTRY ${ }_{i}$ is defined as follows:

```
\mp@subsup{INDUSTRY }{i}{}=1\mathrm{ if person i is employed in construction industries;}
    = 2 if person i is employed in nondurable manufacturing industries;
    = 3 if person i is employed in durable manufacturing industries;
    =4 if person i is employed in transportation, communications, or public utilities industries;
    = 5 if person i is employed in wholesale or retail trades;
    = 6 if person i is employed in services industries;
    = 7 if person i is employed in professional services industries.
```

- Define a set of industry sector dummy variables to represent the categorical variable INDUSTRY i_{i}.

```
construc }\mp@subsup{}{i}{}=1\mathrm{ if person i is employed in construction industries,= 0 otherwise;
ndurman}\mp@subsup{\textrm{i}}{\textrm{i}}{=1}1\mathrm{ if person i is employed in nondurable manufacturing, = 0 otherwise;
durman}\mp@subsup{\textrm{i}}{\textrm{i}}{=1}=1\mathrm{ if person i is employed in durable manufacturing, =0 otherwise;
trcommpu i = 1 if person i is employed in transportation, communications, or public utilities, = 0 otherwise;
trade i = = if person i is employed in wholesale or retail trades, = 0 otherwise;
services }\mp@subsup{\mp@code{i}}{}{=1}1\mathrm{ if person i is employed in services industries,= 0 otherwise;
profserv }\mp@subsup{v}{i}{}=1\mathrm{ if person i is employed in professional services, = 0 otherwise.
```

- By definition, the seven industry sector dummy variables satisfy the adding-up property:
construc $_{\mathrm{i}}+$ ndurman $_{\mathrm{i}}+$ durman $_{\mathrm{i}}+\operatorname{trcommpu}_{\mathrm{i}}+\operatorname{trade}_{\mathrm{i}}+$ services $_{\mathrm{i}}+\operatorname{profserv}_{\mathrm{i}}=1 \quad \forall \mathrm{i}$.
- Implication of the adding-up property: The partitioning of the population or sample into seven mutually exclusive and exhaustive industry sector groups can be completely represented by any six of the seven industry sector dummy variables construc ${ }_{i}$, ndurman $_{i}$, durman $_{i}$, trcommpu $_{i}$, trade $_{i}$, services $_{i}$, and profserv ${ }_{i}$.

For example, the industry dummy variable durman ${ }_{i}$ can be computed from the other six industry sector dummy variables as follows:
durman $_{i}=1-$ construc $_{i}-$ ndurman $_{i}-\operatorname{trcommpu}_{i}-$ trade $_{i}-$ services $_{i}-\operatorname{profserv}_{\mathrm{i}} \quad \forall \mathrm{i}$.
If durable manufacturing industries are chosen as the base group, or reference group, for the categorical variable industry, then the durable manufacturing dummy variable durman ${ }_{i}$ would be excluded from the set of dummy variable regressors used to represent industry in a linear regression equation.

Indicator Variables as Additive Regressors: Differences in Intercepts

Nature: When indicator (dummy) variables are introduced additively as additional regressors in linear regression models, they allow for different intercept coefficients across identifiable subsets of observations in the population.

Example: Suppose we have two mutually exclusive and exhaustive subgroups of observations in the relevant population -- females and males.

We distinguish between these two subgroups of observations by using a female indicator variable \mathbf{F}_{i} defined as follows:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}} & =1 \text { if observation } \mathrm{i} \text { is female } \\
& =0 \text { if observation } \mathrm{i} \text { is not female (i.e., is male). }
\end{aligned}
$$

Model 1: Contains five regressors in the two explanatory variables X_{1} and X_{2}, both of which are continuous.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} X_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

- The population regression function, or conditional mean function, $f\left(\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)$ in Model 1 takes the form

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}
$$

- Model 1 does not allow for any coefficient differences between males and females.
- Model 1 assumes that all six regression coefficients $\beta_{j}(j=0,1, \ldots, 5)$ are the same for males and females.
- Model 1 assumes that the population regression function is the same for both females and males.

Model 2: Allows for different male and female intercepts by introducing the female indicator variable F_{i} as an additional additive regressor in Model 1.
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}$

- The population regression function, or conditional mean function, for Model $\mathbf{2}$ is obtained by taking the conditional expectation of regression equation (2) for any given values of the three explanatory variables X_{i}, $\mathrm{X}_{\mathrm{i} 2}$, and F_{i} :
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\delta_{0} F_{i}$.
- The female population regression function, or conditional mean function, implied by Model 2 is obtained by setting the female indicator variable $\mathrm{F}_{\mathrm{i}}=1$ in (2.1):
$\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0}$.
The female intercept coefficient $=\boldsymbol{\beta}_{0}+\boldsymbol{\delta}_{0}$.
- The male population regression function, or conditional mean function, implied by Model 2 is obtained by setting the female indicator variable $\mathrm{F}_{\mathrm{i}}=0$ in (2.1):
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}$.
The male intercept coefficient $=\boldsymbol{\beta}_{0}$.
- Interpretation of the female indicator variable coefficient $\boldsymbol{\delta}_{\mathbf{0}}$:

1. The slope coefficient δ_{0} of regressor F_{i} in Model 2 equals the female intercept coefficient minus the male intercept coefficient:
female intercept coefficient - male intercept coefficient $=\beta_{0}+\delta_{0}-\beta_{0}=\delta_{0}$
2. A more substantive interpretation of δ_{0} can be obtained by subtracting the male population regression function $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)$ from the female population regression function $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)$:

The female regression function is:
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\delta_{0}$.
The male regression function is:
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}$.
The female-male difference in mean \mathbf{Y} for given values of X_{1} and X_{2} is thus:
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1\right)-E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right)=\delta_{0}$
The coefficient δ_{0} of the female indicator variable in Model 2 is therefore the difference between:
(1) the conditional mean of \mathbf{Y} for females with given values of X_{1} and X_{2}
and
(2) the conditional mean of \mathbf{Y} for males with the same values of X_{1} and X_{2}.

In other words, the coefficient δ_{0} of the female indicator variable in Model 2 is the difference in mean \mathbf{Y} between females and males with identical values of the explanatory variables X_{1} and X_{2}.

Indicator Variables as Multiplicative Regressors: Dummy Variable Interaction Terms

Nature: When indicator (dummy) variables are introduced multiplicatively as additional regressors in linear regression models, they enter as dummy variable interaction terms -- that is, as the product of a dummy variable with some other variable, where the other variable may be either a continuous variable or another dummy variable.

There are therefore two types of dummy variable interaction terms.

1. Interactions of a dummy variable with a continuous variable -- that is, the product of a dummy variable and a continuous variable.
2. Interactions of one dummy variable with another dummy variable -- that is, the product of one dummy variable and another dummy variable.

Usage: Dummy variable interaction terms that equal the product of a continuous variable and an indicator (dummy) variable allow the slope coefficient of the continuous explanatory variable to differ between the two population subgroups identified by the indicator variable.

Model 1:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

Model 2:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

- Since both explanatory variables X_{1} and X_{2} in Models 1 and 2 are continuous variables, the five regressors X_{1}, $\mathrm{X}_{2}, \mathrm{X}_{1}^{2}, \mathrm{X}_{2}^{2}$, and $\mathrm{X}_{1} \mathrm{X}_{2}$ are also continuous variables.
- To allow for different male and female slope coefficients on any of the five regressors $\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{X}_{\mathrm{i} 1}^{2}, \mathrm{X}_{\mathrm{i} 2}^{2}$, and $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$, add as additional regressors interaction terms between the female indicator variable F_{i} and the continuous regressor.
- To allow the slope coefficient of the regressor $\mathrm{X}_{\mathrm{i} 1}$ to differ between females and males, add as an additional regressor to Model 1 or Model 2 the dummy variable interaction term $\mathrm{F}_{\mathrm{i}} X_{\mathrm{i} 1}$.
- To allow the slope coefficient of the regressor $X_{i 1} X_{i 2}$ to differ between females and males, add as an additional regressor to Model 1 or Model 2 the dummy variable interaction term $\mathrm{F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$.
- To allow the slope coefficients of all five regressors $\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{X}_{\mathrm{i} 1}^{2}, \mathrm{X}_{\mathrm{i} 2}^{2}$, and $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$ to differ between females and males, add as additional regressors to Model 1 or Model 2 the five dummy variable interaction terms $\mathrm{F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}, \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}, \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}$, and $\mathrm{F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$.

Model 3: a full-interaction regression equation

Includes as regressors female dummy variable interaction terms with all five of the continuous regressors X_{i},
$\mathrm{X}_{\mathrm{i} 2}, \mathrm{X}_{\mathrm{i1}}^{2}, \mathrm{X}_{\mathrm{i} 2}^{2}$, and $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$.

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{align*}
$$

- The population regression function, or conditional mean function, for Model $\mathbf{3}$ is obtained by taking the conditional expectation of regression equation (3) for any given values of the three explanatory variables X_{il}, $\mathrm{X}_{\mathrm{i} 2}$, and F_{i} :

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1},\right. & \left.X_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.1}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

- The female regression function, or female CMF, is obtained by setting the female indicator variable $\mathbf{F}_{\mathbf{i}}=\mathbf{1}$ in (3.1).
- The male regression function, or male CMF, is obtained by setting the female indicator variable $\mathbf{F}_{\mathbf{i}}=\mathbf{0}$ in (3.1).

$$
\begin{array}{r}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.1}
\end{array}
$$

- The female population regression function, or conditional mean function, implied by Model 3 is obtained by setting the female indicator variable $\mathbf{F}_{i}=1$ in (3.1):

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} X_{\mathrm{i} 2} \\
= & \left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2} \tag{3.2}\\
& +\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 2}^{2}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
= & \alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

where the female regression coefficients are $\alpha_{j}=\beta_{j}+\delta_{j}$ for all $j=0,1, \ldots, 5$.

$$
\begin{array}{ll}
\text { female intercept coefficient } & =\alpha_{0}=\beta_{0}+\delta_{0} \\
\text { female slope coefficient of } \mathrm{X}_{\mathrm{i} 1} & =\alpha_{1}=\beta_{1}+\delta_{1} \\
\text { female slope coefficient of } \mathrm{X}_{\mathrm{i} 2} & =\alpha_{2}=\beta_{2}+\delta_{2} \\
\text { female slope coefficient of } \mathrm{X}_{\mathrm{i} 1}^{2} & =\alpha_{3}=\beta_{3}+\delta_{3} \\
\text { female slope coefficient of } \mathrm{X}_{\mathrm{i} 2} & =\alpha_{4}=\beta_{4}+\delta_{4} \\
\text { female slope coefficient of } \mathrm{X}_{\mathrm{i} 1} X_{\mathrm{i} 2} & =\alpha_{5}=\beta_{5}+\delta_{5}
\end{array}
$$

- The male population regression function, or conditional mean function, implied by Model 3 is obtained by setting the female indicator variable $\mathbf{F}_{\mathbf{i}}=\mathbf{0}$ in (3.1):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.3}\\
& \quad \text { male intercept coefficient }=\beta_{0} \\
& \text { male slope coefficient of } \mathrm{X}_{\mathrm{i} 1}=\beta_{1} \\
& \text { male slope coefficient of } \mathrm{X}_{\mathrm{i} 2}=\beta_{2} \\
& \text { male slope coefficient of } \mathrm{X}_{\mathrm{i} 1}^{2}=\beta_{3} \\
& \text { male slope coefficient of } \mathrm{X}_{\mathrm{i} 2}^{2}=\beta_{4} \\
& \text { male slope coefficient of } \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}=\beta_{5}
\end{align*}
$$

- The difference between the female and male regression functions -- that is, the female-male difference in mean \mathbf{Y} for given (equal) values of the explanatory variables X_{1} and $X_{2}-$ - is:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& -\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}-\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}-\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
= & \delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

Result:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

Interpretation:

- The female-male difference in the conditional mean value of Y for given values $X_{i 1}$ and $X_{i 2}$ of the explanatory variables X_{1} and X_{2} is a quadratic function of $X_{i 1}$ and $X_{i 2}$. It is not a constant, but instead depends on the values of the explanatory variables X_{1} and X_{2}.
- The female-male conditional mean Y difference addresses the following question: What is the female-male difference in mean Y for identical (equal) values of the explanatory variables X_{1} and X_{2}.
- Interpretation of the regression coefficients $\delta_{j}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, 5)$ in Model 3

Each of the δ_{j} coefficients in Model 3 equals a female regression coefficient minus the corresponding male regression coefficient: $\delta_{j}=\alpha_{j}-\beta_{j}$ for all j.
$\delta_{0}=\alpha_{0}-\beta_{0}=$ female intercept coefficient - male intercept coefficient
$\delta_{1}=\alpha_{1}-\beta_{1}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 1}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 1}$
$\delta_{2}=\alpha_{2}-\beta_{2}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 2}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 2}$
$\delta_{3}=\alpha_{3}-\beta_{3}=$ female slope coefficient of $X_{i 1}^{2}-$ male slope coefficient of X_{il}^{2}
$\delta_{4}=\alpha_{4}-\beta_{4}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 2}^{2}-$ male slope coefficient of $\mathrm{X}_{\mathrm{i} 2}^{2}$
$\delta_{5}=\alpha_{5}-\beta_{5}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$

- The marginal effects on \mathbf{Y} of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in Model (3) are obtained by partially differentiating Y , or the conditional mean of Y given X_{1} and X_{2}, with respect to each of the explanatory variables X_{1} and X_{2}.

$$
\begin{align*}
& \mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
&+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i} \mid} \mid\right.\left.\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.1}\\
&+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 3 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{il}}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)}{\partial \mathrm{X}_{\mathrm{il}}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1} \mathrm{~F}_{\mathrm{i}}+2 \delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 3 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}}+2 \delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 3 is different for males and females.

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)}{\partial \mathrm{X}_{\mathrm{il}}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1} \mathrm{~F}_{\mathrm{i}}+2 \delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males is obtained by setting $\mathrm{F}_{\mathrm{i}}=0$ in the above equation:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=0} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females is obtained by setting $\mathrm{F}_{\mathrm{i}}=1$ in the above equation:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2} \\
& =\alpha_{1}+2 \alpha_{3} \mathrm{X}_{\mathrm{i} 1}+\alpha_{5} \mathrm{X}_{\mathrm{i} 2} \quad \quad \text { where } \alpha_{\mathrm{j}}=\beta_{\mathrm{j}}+\delta_{\mathrm{j}}, \mathrm{j}=1,3,5
\end{aligned}
$$

- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ is obtained by subtracting the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males from the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=1}-\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=0} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}-\left(\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}\right) \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}-\beta_{1}-2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}-\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 3 is different for males and females.

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}}+2 \delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ for males is obtained by setting $\mathrm{F}_{\mathrm{i}}=0$ in the above equation:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=0} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ for females is obtained by setting $\mathrm{F}_{\mathrm{i}}=1$ in the above equation:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\left(\beta_{2}+\delta_{2}\right)+2\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 1} \\
& =\alpha_{2}+2 \alpha_{4} \mathrm{X}_{\mathrm{i} 2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \quad \quad \text { where } \alpha_{\mathrm{j}}=\beta_{\mathrm{j}}+\delta_{\mathrm{j}}, \mathrm{j}=2,4,5
\end{aligned}
$$

- The female-male difference in the marginal effect of \mathbf{X}_{2} is obtained by subtracting the marginal effect of $\mathbf{X}_{\mathbf{2}}$ for males from the marginal effect of $\mathbf{X}_{\mathbf{2}}$ for females:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=1}-\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=0} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1}-\left(\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}\right) \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1}-\beta_{2}-2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}-\beta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

Tests for Female-Male Coefficient Differences in Model 3

Re-write the population regression equation and population regression function for Model 3:

$$
\begin{align*}
& \mathrm{Y}_{\mathrm{i}=} \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& \quad+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i} \mid} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.1}\\
& \quad+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

Any hypothesis about coefficient differences between males and females can be formulated as restrictions on the δ_{j} regression coefficients in Model 3, each of which is equal to a female regression coefficient minus the corresponding male regression coefficient.

$\delta_{j}=$ female coefficient of regressor \mathbf{j} - male coefficient of regressor \mathbf{j}

This section gives several examples of hypotheses that can be formulated as restrictions on the δ_{j} coefficients in Model 3.

- Test 1: Test the proposition that males and females have identical mean values of \mathbf{Y} for any given values of X_{1} and X_{2}.
- Recall that the female-male difference in the conditional mean value of Y for any specified values of X_{1} and X_{2} is given in Model 3 by

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The proposition to be tested is that

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1\right)=E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right) \quad \text { for all } i
$$

which implies that

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1\right)-E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right)=0 \quad \text { for all } i
$$

and hence that

$$
\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}=0 \quad \text { for all } \mathrm{i}
$$

- A sufficient condition for these statements to be true is that all six of the δ_{j} coefficients in Model 3 jointly equal zero.
- The null and alternative hypotheses are as follows:

$$
\begin{aligned}
\mathrm{H}_{0}: \delta_{\mathrm{j}} & =0 \quad \text { for all } \mathrm{j}=0,1, \ldots, 5 \\
\delta_{0} & =0 \text { and } \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: \delta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=0,1, \ldots, 5 \\
\delta_{0} & \neq 0 \text { and/or } \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{aligned}
$$

- The restricted model implied by the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by imposing on Model 3 (the unrestricted model) the coefficient restrictions specified by H_{0}.

Model 3, the unrestricted model, is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

The restricted model is obtained by setting $\delta_{\mathrm{j}}=0$ for all $\mathrm{j}=0,1, \ldots, 5$ in Model 3:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

- The test statistic appropriate for this hypothesis test is a Wald F-statistic.
- Test 2: Test the proposition that the female-male difference in mean \mathbf{Y} is a constant, i.e., that it does not depend on the explanatory variables X_{1} and X_{2}.
- Recall that the female-male difference in the conditional mean value of Y for any specified values of X_{1} and X_{2} is given in Model 3 by

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The hypothesis to be tested is that

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, X_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)=\mathrm{a} \text { constant for all } \mathrm{i}
$$

which implies that

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1\right)-E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0\right)=\delta_{0} \quad \text { for all } i
$$

and hence that

$$
\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}=\delta_{0} \quad \text { for all } \mathrm{i}
$$

- A sufficient condition for these statements to be true is that the five $\delta_{\mathbf{j}}$ coefficients on the female dummy variable interaction terms in Model 3 all equal zero.

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

- The null and alternative hypotheses are as follows:

$$
\begin{aligned}
\mathrm{H}_{0}: \delta_{\mathrm{j}} & =0 \quad \text { for all } \mathrm{j}=1, \ldots, 5 \\
\delta_{1} & =0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: \delta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=1, \ldots, 5 \\
\delta_{1} & \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{aligned}
$$

- The restricted model implied by the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by imposing on Model 3 (the unrestricted model) the coefficient restrictions specified by H_{0}.

Model 3, the unrestricted model, is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

The restricted model is obtained by setting $\delta_{j}=0$ for all $\mathrm{j}=1, \ldots, 5$ in Model 3:
$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\delta_{0} F_{i}+u_{i}$

- The test statistic appropriate for this hypothesis test is a Wald F-statistic.
- Test 3: Test the proposition that the female-male difference in mean \mathbf{Y} does not depend on the explanatory variable X_{1}.

This proposition is empirically equivalent to the following three statements:
(1) The relationship of Y to X_{1} is identical for males and females.
(2) The marginal effect of X_{1} on Y is identical for males and females.
(3) The female-male difference in mean Y is a function only of the explanatory variable X_{2}.

- Recall that the female-male difference in the conditional mean value of Y for any specified values of X_{1} and X_{2} is given in Model 3 by

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

The female-male difference in mean Y does not depend on X_{1} if and only if $\boldsymbol{\delta}_{1}=\mathbf{0}$ and $\delta_{3}=\mathbf{0}$ and $\delta_{5}=\mathbf{0}$. Under these three exclusion restrictions,

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)=\delta_{0}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}
$$

- Recall that the marginal effects of $\mathbf{X}_{\mathbf{1}}$ for males and females in Model $\mathbf{3}$ are given respectively by:

Males: $\quad \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{il}}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}$
Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}$
These two functions are identical (for any given values of X_{1} and X_{2}) if and only if $\boldsymbol{\delta}_{\mathbf{1}}=\mathbf{0}$ and $\boldsymbol{\delta}_{3}=\mathbf{0}$ and $\delta_{5}=0$.

- The null and alternative hypotheses are therefore as follows:

$$
\begin{aligned}
\mathrm{H}_{0}: \delta_{\mathrm{j}} & =0 \quad \text { for } \mathrm{j}=1,3,5 \\
\delta_{1} & =0 \text { and } \delta_{3}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: \delta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=1,3,5 \\
\delta_{1} & \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{aligned}
$$

- The restricted model implied by the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by imposing on Model 3 (the unrestricted model) the coefficient restrictions specified by H_{0}.

Model 3, the unrestricted model, is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{align*}
$$

The restricted model is obtained by setting $\delta_{1}=0, \delta_{3}=0$, and $\delta_{5}=0$ in Model 3:
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\mathrm{u}_{\mathrm{i}}$

- The test statistic appropriate for this hypothesis test is a Wald F-statistic.
- Test 4: Test the proposition that the female-male difference in mean \mathbf{Y} does not depend on the explanatory variable \mathbf{X}_{2}.

This proposition is empirically equivalent to the following three statements:
(1) The relationship of Y to X_{2} is identical for males and females.
(2) The marginal effect of X_{2} on Y is identical for males and females.
(3) The female-male difference in mean Y is a function only of the explanatory variable X_{1}.

- Recall that the female-male difference in the conditional mean value of Y for any specified values of X_{1} and X_{2} is given in Model 3 by

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{il}}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} X_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} X_{\mathrm{i} 2}
\end{aligned}
$$

The female-male difference in mean Y does not depend on X_{2} if and only if $\boldsymbol{\delta}_{2}=\mathbf{0}$ and $\boldsymbol{\delta}_{4}=\mathbf{0}$ and $\delta_{5}=\mathbf{0}$. Under these three exclusion restrictions,

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)=\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{3} \mathrm{X}_{\mathrm{il}}^{2}
$$

- Recall that the marginal effects of $\mathbf{X}_{\mathbf{2}}$ for males and females in Model $\mathbf{3}$ are given respectively by:

Males: $\quad \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}$
Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1}$
These two functions are identical (for any given values of X_{1} and X_{2}) if and only if $\boldsymbol{\delta}_{\mathbf{2}}=\mathbf{0}$ and $\boldsymbol{\delta}_{\mathbf{4}}=\mathbf{0}$ and $\delta_{5}=0$.

- The null and alternative hypotheses are therefore as follows:

$$
\begin{aligned}
\mathrm{H}_{0}: \delta_{\mathrm{j}} & =0 \quad \text { for } \mathrm{j}=2,4,5 \\
\delta_{2} & =0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: \delta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=2,4,5 \\
\delta_{2} & \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{aligned}
$$

- The restricted model implied by the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by imposing on Model 3 (the unrestricted model) the coefficient restrictions specified by H_{0}.

Model 3, the unrestricted model, is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{align*}
$$

The restricted model is obtained by setting $\delta_{2}=0, \delta_{4}=0$, and $\delta_{5}=0$ in Model 3:
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\mathrm{u}_{\mathrm{i}}$

- The test statistic appropriate for this hypothesis test is a Wald F-statistic.
- Test 5: Test the proposition that the female-male difference in mean \mathbf{Y} is a linear function of the explanatory variables X_{1} and X_{2}.
- Recall that the female-male difference in the conditional mean value of Y for any specified values of X_{1} and X_{2} is given in Model 3 by

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)- & \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

The female-male difference in mean Y is linear in X_{1} and X_{2} if and only if $\boldsymbol{\delta}_{3}=\mathbf{0}$ and $\delta_{4}=\mathbf{0}$ and $\delta_{5}=\mathbf{0}$. Under these three exclusion restrictions,

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)=\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}
$$

- Note the implications of the three coefficient restrictions $\delta_{3}=\mathbf{0}, \delta_{4}=\mathbf{0}$ and $\delta_{5}=\mathbf{0}$ for the marginal effects of $\mathbf{X}_{\mathbf{1}}$ and X_{2} for females in Model 3, which are given respectively by:

Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}$
Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1}$

Under the coefficient restrictions $\delta_{3}=0$ and $\delta_{4}=\mathbf{0}$ and $\delta_{5}=\mathbf{0}$, the marginal effects of X_{1} and X_{2} for females are:

Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}$
Females: $\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}$
In other words, under the coefficient restrictions $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{5}=0$, the marginal effects of X_{1} and X_{2} for females differ from the marginal effects of X_{1} and X_{2} for males only by a constant.

$$
\begin{aligned}
\delta_{1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{il}}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{il}}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{il}}} \\
& =\text { marginal effect of } \mathrm{X}_{1} \text { for females }- \text { marginal effect of } \mathrm{X}_{1} \text { for males } \\
\delta_{2} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{il}}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\text { marginal effect of } \mathrm{X}_{2} \text { for females }- \text { marginal effect of } \mathrm{X}_{2} \text { for males }
\end{aligned}
$$

- The null and alternative hypotheses are therefore as follows:

$$
\begin{aligned}
\mathrm{H}_{0}: \delta_{\mathrm{j}} & =0 \quad \text { for } \mathrm{j}=3,4,5 \\
\delta_{3} & =0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: \delta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=3,4,5 \\
\delta_{3} & \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{aligned}
$$

- The restricted model implied by the null hypothesis $\mathbf{H}_{\mathbf{0}}$ is obtained by imposing on Model 3 (the unrestricted model) the coefficient restrictions specified by H_{0}.

Model 3, the unrestricted model, is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

The restricted model is obtained by setting $\delta_{3}=0, \delta_{4}=0$, and $\delta_{5}=0$ in Model 3:

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
$$

- The test statistic appropriate for this hypothesis test is a Wald F-statistic.

Tests on the Marginal Effects of \mathbf{X}_{1} and $\mathbf{X}_{\mathbf{2}}$ for Males in Model 3

Model 3: Tests to Perform on the Marginal Effect of $\mathbf{X}_{\mathbf{1}}$ for Males

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 3 is:

$$
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{il}}}\right)_{\mathrm{F}_{\mathrm{i}}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 1m: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males is zero for any values of the two continuous explanatory variables X_{1} and X_{2}.

$$
\begin{aligned}
\mathrm{H}_{0}: \beta_{\mathrm{j}} & =0 \quad \text { for } \mathrm{j}=1,3,5 \\
\beta_{1} & =0 \text { and } \beta_{3}=0 \text { and } \beta_{5}=0 \\
\mathrm{H}_{1}: \beta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=1,3,5 \\
\beta_{1} & \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{5} \neq 0
\end{aligned}
$$

Perform an F-test of these three coefficient exclusion restrictions using the Stata test command.

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 3 is:

$$
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 2m: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males is a constant, i.e., that is does not depend upon the values of X_{1} or X_{2}.

$$
\begin{aligned}
\mathrm{H}_{0}: \beta_{\mathrm{j}} & =0 \quad \text { for } \mathrm{j}=3,5 \\
\beta_{3} & =0 \text { and } \beta_{5}=0 \\
\mathrm{H}_{1}: \beta_{\mathrm{j}} & \neq 0 \quad \mathrm{j}=3,5 \\
\beta_{3} & \neq 0 \text { and } / \text { or } \beta_{5} \neq 0
\end{aligned}
$$

Perform an F-test of these two coefficient exclusion restrictions using the Stata test command .

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 3 is:

$$
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{il}}}\right)_{\mathrm{F}_{\mathrm{i}}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 3m: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males does not depend upon, or is unrelated to, the value of \mathbf{X}_{2}.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{5} \neq 0
\end{aligned}
$$

Perform either an F-test or a two-tail t-test of this one coefficient exclusion restriction.

- Test 4m: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males does not depend upon, or is unrelated to, the value of X_{1}.

$$
\begin{aligned}
& H_{0}: \beta_{3}=0 \\
& H_{1}: \beta_{3} \neq 0
\end{aligned}
$$

Perform either an F-test or a two-tail t-test of this one coefficient exclusion restriction.

Model 3: Tests to Perform on the Marginal Effect of $\mathbf{X}_{\mathbf{2}}$ for Males

Formulate the analogs of Tests 1 m to 4 m for the marginal effect of $\mathbf{X}_{\mathbf{2}}$ for males, which is

$$
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
$$

Tests on the Marginal Effects of $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ for Females in Model 3

Model 3: Tests to Perform on the Marginal Effect of $\mathbf{X}_{\mathbf{1}}$ for Females

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 3 is:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Test 1f: Test the proposition that the marginal effect of $X_{\mathbf{1}}$ for females is zero for any values of the two continuous explanatory variables X_{1} and X_{2}.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}}+\delta_{\mathrm{j}}=0 \quad \text { for } \mathrm{j}=1,3,5 \\
& \beta_{1}+\delta_{1}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{5}+\delta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}}+\delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,3,5 \\
& \beta_{1}+\delta_{1} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{5}+\delta_{5} \neq 0
\end{aligned}
$$

Perform an F-test of these three coefficient exclusion restrictions; use a sequence of three Stata test commands with the accumulate option.

```
test x1 + fx1 = 0, notest
test x1sq + fx1sq = 0, notest accumulate
test x1x2 + fx1x2 = 0, accumulate
```

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 3 is:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Test 2f: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females is a constant, i.e., that is does not depend upon the values of X_{1} or X_{2}.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}}+\delta_{\mathrm{j}} \\
&=0 \quad \text { for } \mathrm{j}=3,5 \\
& \beta_{3}+\delta_{3}=0 \text { and } \beta_{5}+\delta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}}+\delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=3,5 \\
& \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{5}+\delta_{5} \neq 0
\end{aligned}
$$

Perform an F-test of these two coefficient exclusion restrictions; use a sequence of two Stata test commands with the accumulate option.

```
test x1sq + fx1sq = 0, notest
test x1x2 + fx1x2 = 0, accumulate
```

The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for $\boldsymbol{f e m a l e s}$ in Model 3 is:

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right)_{\mathrm{F}_{\mathrm{i}}=1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{il}}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{3} \mathrm{X}_{\mathrm{i} 1}+\delta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Test 3f: Test the proposition that the marginal effect of X_{1} for females does not depend upon, or is unrelated to, the value of X_{2}.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{5}+\delta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{5}+\delta_{5} \neq 0
\end{aligned}
$$

Perform either an F-test or a two-tail t-test of this one coefficient exclusion restriction.

- Test 4f: Test the proposition that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females does not depend upon, or is unrelated to, the value of X_{1}.

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}+\delta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{3}+\delta_{3} \neq 0
\end{aligned}
$$

Perform either an F-test or a two-tail t-test of this one coefficient exclusion restriction.

Model 3: Tests to Perform on the Marginal Effect of $\mathbf{X}_{\mathbf{2}}$ for Females

Formulate the analogs of Tests 1 f to 4 f for the marginal effect of $\mathbf{X}_{\mathbf{2}}$ for females, which is

$$
\begin{aligned}
\left(\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}\right)_{\mathrm{F}_{\mathrm{i}}=1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=1\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} \\
& =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+\delta_{2}+2 \delta_{4} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\left(\beta_{2}+\delta_{2}\right)+2\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

An Alternative Formulation of Model 3 Using the Male Dummy Variable $\mathbf{M}_{\mathbf{i}}$

Model 3: a full-interaction regression equation in the female dummy variable F_{i}
Recall that the population regression equation and population regression function for Model $\mathbf{3}$ are:

$$
\begin{align*}
& \mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& \quad+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i} \mid} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.1}\\
& \quad+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

Model 3*: an alternative full-interaction regression equation in the male dummy variable $\mathbf{M}_{\mathbf{i}}$

- The population regression equation for Model 3* is

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \alpha_{0}+\alpha_{1} X_{i 1}+\alpha_{2} X_{\mathrm{i} 2}+\alpha_{3} X_{\mathrm{i} 1}^{2}+\alpha_{4} X_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\gamma_{0} \mathrm{M}_{\mathrm{i}}+\gamma_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{*}
\end{align*}
$$

- The population regression function, or conditional mean function, for Model 3* is obtained by taking the conditional expectation of regression equation (3^{*}) for any given values of the three explanatory variables $X_{i 1}$, X_{i}, and M_{i} :

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}\right)=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{*}\\
& \quad+\gamma_{0} \mathrm{M}_{\mathrm{i}}+\gamma_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

Derivation of Model 3* from Model 3

Substitute for the female dummy variable $\mathbf{F}_{\mathbf{i}}$ in the PRE for Model 3 the equivalent expression $\mathbf{F}_{\mathbf{i}}=\mathbf{1}-\mathbf{M}_{\mathbf{i}}$:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{0}\left(1-\mathrm{M}_{\mathrm{i}}\right)+\delta_{1}\left(1-\mathrm{M}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 1}+\delta_{2}\left(1-\mathrm{M}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 2}+\delta_{3}\left(1-\mathrm{M}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{il}}^{2}+\delta_{4}\left(1-\mathrm{M}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5}\left(1-\mathrm{M}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{il}}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& -\delta_{0} \mathrm{M}_{\mathrm{i}}-\delta_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}-\delta_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}-\delta_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}-\delta_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}-\delta_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
\mathrm{Y}_{\mathrm{i}}= & \left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 2}^{2}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& -\delta_{0} \mathrm{M}_{\mathrm{i}}-\delta_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}-\delta_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}-\delta_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i1}}^{2}-\delta_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}-\delta_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \\
\mathrm{Y}_{\mathrm{i}}= & \alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{*}\\
& +\gamma_{0} \mathrm{M}_{\mathrm{i}}+\gamma_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

where the last line comes from defining $\alpha_{j}=\beta_{j}+\delta_{j}$ and $\gamma_{j}=-\delta_{j}$ for all $\mathrm{j}=0,1, \ldots, 5$.
$\alpha_{j}=$ the female coefficient of regressor j

$$
(\mathrm{j}=0,1, \ldots, 5)
$$

$$
\gamma_{j}=\text { male coefficient of regressor } j \text { minus female coefficient of regressor } j \quad(j=0,1, \ldots, 5)
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}\right)=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{*}\\
& \quad+\gamma_{0} \mathrm{M}_{\mathrm{i}}+\gamma_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

- The male population regression function, or conditional mean function, implied by Model 3* is obtained by setting the male indicator variable $\mathrm{M}_{\mathrm{i}}=1$ in (3.1*):

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=1\right)= & \alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\gamma_{0}+\gamma_{1} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
= & \left(\alpha_{0}+\gamma_{0}\right)+\left(\alpha_{1}+\gamma_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\alpha_{2}+\gamma_{2}\right) \mathrm{X}_{\mathrm{i} 2} \\
& +\left(\alpha_{3}+\gamma_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\alpha_{4}+\gamma_{4}\right) \mathrm{X}_{\mathrm{i} 2}^{2}+\left(\alpha_{5}+\gamma_{5}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.2*}\\
= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

where the male regression coefficients are $\beta_{j}=\alpha_{j}+\gamma_{j}$ for all $j=0,1, \ldots, 5$.

- The female population regression function, or conditional mean function, implied by Model 3* is obtained by setting the male indicator variable $\mathrm{M}_{\mathrm{i}}=0$ in (3.1*):

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=0\right)=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3.3*}
\end{equation*}
$$

- The difference between the male and female regression functions - that is, the male-female difference in mean \mathbf{Y} for given (equal) values of the explanatory variables X_{1} and $X_{2}-$ is:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=1\right) & -\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=0\right) \\
& =\gamma_{0}+\gamma_{1} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{X}_{\mathrm{i} 1} X_{i 2}
\end{aligned}
$$

- Interpretation of the regression coefficients $\gamma_{\mathbf{j}}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, 5)$ in Model 3^{*}

Each of the γ_{j} coefficients in Model 3* equals a male regression coefficient minus the corresponding female regression coefficient: $\gamma_{j}=\beta_{j}-\alpha_{j}$ for all j .
$\gamma_{0}=\beta_{0}-\alpha_{0}=$ male intercept coefficient - female intercept coefficient
$\gamma_{1}=\beta_{1}-\alpha_{1}=$ male slope coefficient of $X_{i 1}$-female slope coefficient of $X_{i 1}$
$\gamma_{2}=\beta_{2}-\alpha_{2}=$ male slope coefficient of $\mathrm{X}_{\mathrm{i} 2}-$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 2}$
$\gamma_{3}=\beta_{3}-\alpha_{3}=$ male slope coefficient of $X_{i 1}^{2}-$ female slope coefficient of $X_{i 1}^{2}$
$\gamma_{4}=\beta_{4}-\alpha_{4}=$ male slope coefficient of $X_{i 2}^{2}-$ female slope coefficient of $X_{i 2}^{2}$
$\gamma_{5}=\beta_{5}-\alpha_{5}=$ male slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}-$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$
i.e., $\gamma_{j}=\boldsymbol{m a l e}$ coefficient of regressor j minus female coefficient of regressor $\mathrm{j} \quad(\mathrm{j}=0,1, \ldots, 5)$

- Recall the interpretation of the regression coefficients $\delta_{j}(\mathbf{j}=0,1, \ldots, 5)$ on the female dummy interaction terms in Model 3

Each of the δ_{j} coefficients in Model 3 equals a female regression coefficient minus the corresponding male regression coefficient: $\delta_{\mathrm{j}}=\alpha_{\mathrm{j}}-\beta_{\mathrm{j}}$ for all j .
$\delta_{0}=\alpha_{0}-\beta_{0}=$ female intercept coefficient - male intercept coefficient
$\delta_{1}=\alpha_{1}-\beta_{1}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 1}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 1}$
$\delta_{2}=\alpha_{2}-\beta_{2}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 2}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 2}$
$\delta_{3}=\alpha_{3}-\beta_{3}=$ female slope coefficient of $X_{i 1}^{2}-$ male slope coefficient of $X_{i 1}^{2}$
$\delta_{4}=\alpha_{4}-\beta_{4}=$ female slope coefficient of $X_{i 2}^{2}-$ male slope coefficient of $X_{i 2}^{2}$
$\delta_{5}=\alpha_{5}-\beta_{5}=$ female slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$ - male slope coefficient of $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$
i.e., $\delta_{j}=$ female coefficient of regressor j minus male coefficient of regressor $\mathrm{j} \quad(\mathrm{j}=0,1, \ldots, 5)$

- RESULT: The regression coefficients $\delta_{j}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, 5)$ on the female dummy interaction terms in Model 3 equal the negative of the regression coefficients $\gamma_{j}(\mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, 5)$ on the male dummy interaction terms in Model 3*:

$$
\delta_{\mathrm{j}}=-\gamma_{\mathrm{j}} \quad \text { for all } \mathrm{j}=0,1, \ldots, 5
$$

Compare Model 3 and Model 3*: they are observationally equivalent

Model 3: a full-interaction regression equation in the female dummy variable \mathbf{F}_{i}

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} X_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{i} 1}^{2}+\beta_{4} X_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{3}\\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}^{2}+\delta_{4} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}^{2}+\delta_{5} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

where
$\beta_{\mathrm{j}}=$ male regression coefficients
$\alpha_{\mathrm{j}}=\beta_{\mathrm{j}}+\delta_{\mathrm{j}}=$ female regression coefficients
$\delta_{\mathrm{j}}=\alpha_{\mathrm{j}}-\beta_{\mathrm{j}}=$ female-male coefficient differences

Model 3*: an alternative full-interaction regression equation in the male dummy variable \mathbf{M}_{i}

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{i} 1}+\alpha_{2} \mathrm{X}_{\mathrm{i} 2}+\alpha_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\alpha_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\alpha_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \tag{*}\\
& +\gamma_{0} \mathrm{M}_{\mathrm{i}}+\gamma_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\gamma_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\gamma_{3} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\gamma_{4} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\gamma_{5} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}}
\end{align*}
$$

where
$\alpha_{\mathrm{j}}=$ female regression coefficients
$\beta_{\mathrm{j}}=\alpha_{\mathrm{j}}+\gamma_{\mathrm{j}}=$ male regression coefficients
$\gamma_{\mathrm{j}}=\beta_{\mathrm{j}}-\alpha_{\mathrm{j}}=$ male-female coefficient differences

Relationship between OLS coefficient estimates of Models 3 and 3*: the OLS coefficient estimates from
Models 3 and 3* are identical.
$\hat{\beta}_{\mathrm{j}}$ from Model $3=\hat{\alpha}_{\mathrm{j}}+\hat{\gamma}_{\mathrm{j}}$ from Model 3*
$\hat{\alpha}_{\mathrm{j}}=\hat{\beta}_{\mathrm{j}}+\hat{\delta}_{\mathrm{j}}$ from Model $3=\hat{\alpha}_{\mathrm{j}}$ from Model 3*
$\hat{\delta}_{\mathrm{j}}=\hat{\alpha}_{\mathrm{j}}-\hat{\beta}_{\mathrm{j}}$ from Model $3=-\hat{\gamma}_{\mathrm{j}}=-\left(\hat{\beta}_{\mathrm{j}}-\hat{\alpha}_{\mathrm{j}}\right)$ from Model 3*

