ECON 452* -- NOTE 3

Marginal Effects of Continuous Explanatory Variables: Constant or Variable?

Constant Marginal Effects of Explanatory Variables: A Starting Point

Nature: A continuous explanatory variable has a constant marginal effect on the dependent variable if it enters the regressor set only linearly and additively.

Model 1:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

- Model 1 contains only two explanatory variables -- X_{1} and $X_{2}-$ and two regressors.
- The population regression function, or conditional mean function, $f\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 2}\right)$ in Model 1 takes the form

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2} .
$$

Model 1:

$$
\begin{align*}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+u_{i} \tag{1}\\
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2} .
\end{align*}
$$

- The marginal effects on \mathbf{Y} of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in equation (1) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X_{1} and X_{2}, with respect to each of the explanatory variables X_{1} and X_{2}.

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 1 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}=\text { a constant }
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 1 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}=\text { a constant }
$$

Example of Model 1:

$$
\text { price }_{i}=\beta_{0}+\beta_{1} \mathrm{wgt}_{\mathrm{i}}+\beta_{2} \mathrm{mpg}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

where
price $_{i}=$ the price of the i-th car (in US dollars);
wgt $_{\mathrm{i}}=$ the weight of the i-th car (in pounds);
$\mathrm{mpg}_{\mathrm{i}}=$ the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon).

- Variable Marginal Effects and Interaction Terms: Squares and Cross Products of Continuous Explanatory Variables

Nature: Interactions between two continuous variables refer to products of pairs of explanatory variables.

- If X_{ij} and X_{ih} are two continuous explanatory variables, the interaction term between them is the product $\mathrm{X}_{\mathrm{ij}} \mathrm{X}_{\mathrm{ih}}$.
- The interaction of the variable $X_{i j}$ with itself is simply the product $X_{i j} X_{i j}=X_{i j}^{2}$.
- Inclusion of these regressors in a linear regression model allows for variable -- or nonconstant -- marginal effects of the explanatory variables on the conditional mean of the dependent variable Y.

Usaqe: Interaction terms between continuous variables allow the marginal effect of one explanatory variable to be a linear function of both itself and other explanatory variables.

Model 2:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

- Model 2 contains only two explanatory variables -- X_{1} and X_{2}-- but five regressors.
- Formally, the population regression function $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)=\mathrm{f}\left(\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)$ in PRE (2) can be derived as a second-order Taylor series approximation to the function $f\left(X_{i 1}, X_{i 2}\right)$. A second-order Taylor series approximation to the population regression function $f\left(\mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)$ takes the form

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2} .
$$

- The marginal effects on \mathbf{Y} of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in equation (2) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X_{1} and X_{2}, with respect to each of the explanatory variables X_{1} and X_{2}.

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\text { a linear function of both } \mathrm{X}_{\mathrm{i} 1} \text { and } \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 2 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\text { a linear function of both } \mathrm{X}_{\mathrm{i} 1} \text { and } \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

Squares of Continuous Explanatory Variables

Purpose: Allow for increasing or decreasing marginal effects of an explanatory variable on the dependent variable -- sometimes called increasing or decreasing marginal returns.

Determining whether the marginal effect of X_{1} is increasing or decreasing

- Whether the marginal effect of $\mathbf{X}_{\mathbf{1}}$ is increasing or decreasing -- i.e., whether X_{1} exhibits increasing or decreasing marginal returns -- is determined by the sign of the regression coefficient β_{3} on the regressor $X_{i 1}^{2}$ in Model 2.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

- We previously saw that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model $\mathbf{2}$ is given by the first-order partial derivative of Y_{i}, or $E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)$, with respect to $X_{i 1}$:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- To determine whether the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model $\mathbf{2}$ is increasing or decreasing in $\mathbf{X}_{\mathbf{1}}$, we need to examine the second-order partial derivative of Y_{i}, or $E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)$, with respect to $X_{i 1}$:

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}^{2}}=\frac{\partial}{\partial \mathrm{X}_{\mathrm{i} 1}} \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial^{2} \mathrm{X}_{\mathrm{i} 1}^{2}}=2 \beta_{3}
$$

$$
\frac{\partial^{2} Y_{i}}{\partial X_{i 1}^{2}}=\frac{\partial}{\partial X_{i 1}} \frac{\partial E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)}{\partial X_{i 1}}=\frac{\partial^{2} E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)}{\partial^{2} X_{i 1}^{2}}=2 \beta_{3}
$$

1. The marginal effect of X_{1} is increasing in $X_{1}--$ meaning X_{1} exhibits increasing marginal returns -- when

$$
\frac{\partial^{2} Y_{i}}{\partial X_{i 1}^{2}}=\frac{\partial^{2} E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)}{\partial^{2} X_{i 1}^{2}}=2 \beta_{3}>0 \quad \text { i.e., when } \beta_{3}>0
$$

2. The marginal effect of X_{1} is decreasing in X_{1}-- meaning X_{1} exhibits decreasing marginal returns -- when

$$
\frac{\partial^{2} Y_{i}}{\partial X_{i 1}^{2}}=\frac{\partial^{2} E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)}{\partial^{2} X_{i 1}^{2}}=2 \beta_{3}<0 \quad \text { i.e., when } \beta_{3}<0
$$

Determining whether the marginal effect of \mathbf{X}_{2} is increasing or decreasing

- Whether the marginal effect of \mathbf{X}_{2} is increasing or decreasing -- i.e., whether X_{2} exhibits increasing or decreasing marginal returns -- is determined by the sign of the regression coefficient β_{4} on the regressor $X_{i 2}^{2}$ in Model 2.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

- We previously saw that the marginal effect of \mathbf{X}_{2} in Model 2 is given by the first-order partial derivative of Y_{i}, or $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)$, with respect to $\mathrm{X}_{\mathrm{i} 2}$:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
$$

- To determine whether the marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model $\mathbf{2}$ is increasing or decreasing in $\mathbf{X}_{\mathbf{2}}$, we need to examine the second-order partial derivative of Y_{i}, or $E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)$, with respect to $X_{i 2}$:

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}^{2}}=\frac{\partial}{\partial \mathrm{X}_{\mathrm{i} 2}} \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial^{2} \mathrm{X}_{\mathrm{i} 2}^{2}}=2 \beta_{4}
$$

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}^{2}}=\frac{\partial}{\partial \mathrm{X}_{\mathrm{i} 2}} \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial^{2} \mathrm{X}_{\mathrm{i} 2}^{2}}=2 \beta_{4}
$$

1. The marginal effect of X_{2} is increasing in X_{2}-- meaning X_{2} exhibits increasing marginal returns -- when

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}^{2}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial^{2} \mathrm{X}_{\mathrm{i} 2}^{2}}=2 \beta_{4}>0 \quad \text { i.e., when } \beta_{4}>0
$$

2. The marginal effect of X_{2} is decreasing in X_{2}-- meaning X_{2} exhibits decreasing marginal returns -- when

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}^{2}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial^{2} \mathrm{X}_{\mathrm{i} 2}^{2}}=2 \beta_{4}<0 \quad \text { i.e., when } \beta_{4}<0
$$

Products of Two Continuous Explanatory Variables

Purpose: Allow for relationships of complementarity or substitutability between X_{1} and X_{2} in determining Y.

- Whether $\mathbf{X}_{\mathbf{1}}$ and \mathbf{X}_{2} are complementary or substitutable is determined by the sign of the regression coefficient β_{5} on the interaction term $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$ in Model 2.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\mathrm{u}_{\mathrm{i}} \tag{2}
\end{equation*}
$$

- We previously saw that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is given by the first-order partial derivative of Y_{i}, or $\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)$, with respect to $\mathrm{X}_{\mathrm{i} 1}$:

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& \frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

- To determine whether the marginal effect of $\mathbf{X}_{\mathbf{1}}\left(\mathbf{X}_{2}\right)$ in Model $\mathbf{2}$ is increasing or decreasing in $\mathbf{X}_{\mathbf{2}}\left(\mathbf{X}_{1}\right)$, we need to examine the second-order cross partial derivative of Y_{i}, or $E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)$, with respect to $X_{i 1}$ and $\mathrm{X}_{\mathrm{i} 2}$:

$$
\frac{\partial^{2} \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{5}
$$

1. The marginal effect of X_{1} is increasing in X_{2} (or the marginal effect of X_{2} is increasing in X_{1}) -- meaning X_{1} and X_{2} are complementary -- when

$$
\frac{\partial^{2} Y_{i}}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{5}>0
$$

2. The marginal effect of X_{1} is decreasing in X_{2} (or the marginal effect of $\mathbf{X}_{\mathbf{2}}$ is decreasing in \mathbf{X}_{1}) -- meaning X_{1} and X_{2} are substitutable -- when

$$
\frac{\partial^{2} Y_{i}}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial^{2} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2} \partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{5}<0
$$

Example of Model 2:

$$
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \mathrm{wgt}_{\mathrm{i}}+\beta_{2} \mathrm{mpg}_{\mathrm{i}}+\beta_{3} \mathrm{wgt}_{\mathrm{i}}^{2}+\beta_{4} \mathrm{mpg}_{\mathrm{i}}^{2}+\beta_{5} \mathrm{wgt}_{\mathrm{i}} \mathrm{mpg}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} .
$$

where
price $_{i}=$ the price of the i-th car (in US dollars);
wgt $_{\mathrm{i}}=$ the weight of the i -th car (in pounds);
wgti $_{i}^{2}=$ the square of $\mathrm{wgt}_{\mathrm{i}}$;
$\mathrm{mpg}_{\mathrm{i}}=$ the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon);
$\mathrm{mpg}_{\mathrm{i}}^{2}=$ the square of $\mathrm{mpg}_{\mathrm{i}}$;
$\mathrm{wgt}_{\mathrm{i}} \mathrm{mpg}_{\mathrm{i}}=$ the product of $\mathrm{wgt}_{\mathrm{i}}$ and $\mathrm{mpg}_{\mathrm{i}}$ for the i-th car.

Review: Models 1 and 2 in Two Continuous Explanatory Variables \mathbf{X}_{1} and $\mathbf{X}_{\mathbf{2}}$

Model 1: Constant marginal effects of the explanatory variables X_{1} and X_{2}

$$
\begin{align*}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+u_{i} \tag{1}\\
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
\end{align*}
$$

- Model 1 contains only two continuous explanatory variables -- X_{1} and $\mathrm{X}_{2}--$ and two regressors.
- The marginal effects on \mathbf{Y} of the explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ are:

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 1 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}=\mathrm{a} \text { constant }
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 1 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}=\text { a constant }
$$

Model 2:

$$
\begin{align*}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 11} X_{i 2}+u_{i} \tag{2}\\
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}
\end{align*}
$$

- Model 2 contains only two continuous explanatory variables -- X_{1} and X_{2}-- but five regressors.
- The marginal effects on \mathbf{Y} of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ are:

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}=\text { a linear function of both } \mathrm{X}_{\mathrm{i} 1} \text { and } \mathrm{X}_{\mathrm{i} 2}
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}=\text { a linear function of both } \mathrm{X}_{\mathrm{i} 1} \text { and } \mathrm{X}_{\mathrm{i} 2}
$$

Example of Model 1:

$$
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \mathrm{wgt}_{\mathrm{i}}+\beta_{2} \mathrm{mpg}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

where
price $_{\mathrm{i}}=$ the price of the i -th car (in US dollars)
wgt $_{\mathrm{i}}=$ the weight of the i-th car (in pounds)
$\mathrm{mpg}_{\mathrm{i}}=$ the fuel efficiency of the i -th car (in miles per gallon)

Example of Model 2:

$$
\operatorname{price}_{i}=\beta_{0}+\beta_{1} \mathrm{wgt}_{i}+\beta_{2} \mathrm{mpg}_{\mathrm{i}}+\beta_{3} \mathrm{wgt}_{\mathrm{i}}^{2}+\beta_{4} \mathrm{mpg}_{\mathrm{i}}^{2}+\beta_{5} \mathrm{wgt}_{\mathrm{i}} \mathrm{mpg}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

where
price $_{i}=$ the price of the i-th car (in US dollars)
$\mathrm{wgt}_{\mathrm{i}}=$ the weight of the i -th car (in pounds)
$\mathrm{wgt}_{\mathrm{i}}^{2}=$ the square of $\mathrm{wgt}_{\mathrm{i}}$ for the i -th car
$\mathrm{mpg}_{\mathrm{i}}=$ the fuel efficiency of the i-th car (in miles per gallon)
$\mathrm{mpg}_{\mathrm{i}}^{2}=$ the square of $\mathrm{mpg}_{\mathrm{i}}$ for the i -th car
$\mathrm{wgt}_{\mathrm{i}} \mathrm{mpg}_{\mathrm{i}}=$ the product (interaction) of $\mathrm{wgt}_{\mathrm{i}}$ and $\mathrm{mpg}_{\mathrm{i}}$ for the i -th car

Hypothesis Tests on Model 2

- Test 1: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}} \mathbf{o n} \mathbf{Y}$ in Model $\mathbf{2}$ is zero for all values of X_{1} and X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}=0$ for all i are $\beta_{1}=0$ and $\beta_{3}=0$ and $\beta_{5}=0$. We therefore want to test these three coefficient exclusion restrictions.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \text { and } \beta_{3}=0 \text { and } \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{5} \neq 0
\end{aligned}
$$

- First, estimate Model 2 by OLS using the following Stata regress command:

```
regress y x1 x2 x1sq x2sq x1x2
```

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1 x1sq x1x2
```

- Test 2: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} in Model 2 is constant.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\beta_{1} \text { (a constant) } \quad \text { if } \beta_{3}=0 \text { and } \beta_{5}=0
\end{aligned}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}=\beta_{1}$ (a constant) for all i are $\beta_{3}=0$ and $\beta_{5}=0$. We therefore want to test these two coefficient exclusion restrictions.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}=0 \text { and } \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{3} \neq 0 \text { and } / \text { or } \beta_{5} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq x1x2
```

- Test 3: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{2}}$ on \mathbf{Y} in Model $\mathbf{2}$ is zero for all values of X_{1} and X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 2}=0$ for all i are $\beta_{2}=0$ and $\beta_{4}=0$ and $\beta_{5}=0$. We therefore want to test these three coefficient restrictions.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0 \text { and } \beta_{4}=0 \text { and } \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0 \text { and/or } \beta_{4} \neq 0 \text { and/or } \beta_{5} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x2 x2sq x1x2
```

- Test 4: Test the hypothesis that the marginal effect of \mathbf{X}_{2} on \mathbf{Y} in Model 2 is constant.
- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 2 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\beta_{2} \text { (a constant) } \text { if } \beta_{4}=0 \text { and } \beta_{5}=0
\end{aligned}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 2}=\beta_{2}$ (a constant) for all i are $\beta_{4}=0$ and $\beta_{5}=0$. We therefore want to test these two coefficient exclusion restrictions.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and } / \text { or } \beta_{5} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x2sq x1x2
```

- Test 5: Test the hypothesis that both the marginal effect of X_{1} on Y and the marginal effect of \boldsymbol{X}_{2} on Y are constants.

This is equivalent to testing whether the three additional regressors that Model 2 introduces into Model 1 namely $X_{i 1}^{2}, X_{i 2}^{2}$ and $X_{i 1} X_{i 2}$ - are necessary in order to adequately represent the relationship of Y_{i} to the two continuous explanatory variables $\mathrm{X}_{\mathrm{i} 1}$ and $\mathrm{X}_{\mathrm{i} 2}$.

- The marginal effects of $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in Model 2 are:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& =\beta_{1} \quad \text { if } \beta_{3}=0 \text { and } \beta_{5}=0 \\
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \\
& =\beta_{2} \quad \text { if } \beta_{4}=0 \text { and } \beta_{5}=0
\end{aligned}
$$

- Sufficient conditions for both marginal effects to be constants for all i are $\beta_{3}=0$ and $\beta_{4}=0$ and $\beta_{5}=0$. We therefore want to test jointly these three coefficient restrictions.
- Test 5 (continued): Test the hypothesis that both the marginal effect of X_{1} on Y and the marginal effect of X_{2} on Y are constants.
- The null and alternative hypotheses are:

$$
\begin{array}{lll}
\mathrm{H}_{0}: \beta_{3}=0 \text { and } \beta_{4}=0 \text { and } \beta_{5}=0 & \Rightarrow & \text { Model } 1 \\
\mathrm{H}_{1}: \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0 \text { and/or } \beta_{5} \neq 0 & \Rightarrow & \text { Model } 2
\end{array}
$$

Note that the null hypothesis H_{0} implies that Model 1 is empirically adequate, whereas the alternative hypothesis H_{1} implies rejection of Model 1 in favor of Model 2.

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq x2sq x1x2
```

- Test 6: Test the hypothesis that the marginal effect of X_{1} on Y is unrelated to, or does not depend upon, X_{1}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}
$$

- A sufficient condition for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 1}$ for all i is $\beta_{3}=0$. We therefore want to test this coefficient exclusion restriction on Model 2.
- The null and alternative hypotheses are:
$\mathrm{H}_{0}: \beta_{3}=0$
$\mathrm{H}_{1}: \beta_{3} \neq 0$
- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test $x 1 s q \quad$ or \quad test $x 1 s q=0$
- Equivalently, compute a two-tail \mathbf{t}-test of H_{0} against H_{1} using the following Stata lincom command:
lincom _b[x1sq]
- Test 7: Test the hypothesis that the marginal effect of X_{2} on Y is unrelated to, or does not depend upon, X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 2 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
$$

- A sufficient condition for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 2}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 2}$ for all i is $\beta_{4}=0$. We therefore want to test this coefficient exclusion restriction on Model 2.
- The null and alternative hypotheses are:
$\mathrm{H}_{0}: \beta_{4}=0$
$\mathrm{H}_{1}: \beta_{4} \neq 0$
- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test $x 2 \mathrm{sq} \quad$ or \quad test $\times 2 \mathrm{sq}=0$
- Equivalently, compute a two-tail \mathbf{t}-test of H_{0} against H_{1} using the following Stata lincom command:
lincom _b[x2sq]
- Test 8: Consider the following two propositions:

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} is unrelated to $\mathbf{X}_{\mathbf{2}}$ in Model 2 .
2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ on \mathbf{Y} is unrelated to $\mathbf{X}_{\mathbf{1}}$ in Model 2 .

- Recall that the marginal effects on Y of X_{1} and X_{2} in Model 2 are:

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2} \\
& \frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}}=\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

Propositions 1 and 2 imply the same coefficient exclusion restriction on Model 2, namely the restriction $\beta_{5}=0$.

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} is unrelated to \mathbf{X}_{2} if $\beta_{5}=0$ in Model 2.
2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ on \mathbf{Y} is unrelated to $\mathbf{X}_{\mathbf{1}}$ if $\beta_{5}=0$ in Model 2 .

- The null and alternative hypotheses for both these propositions are:

$$
\begin{aligned}
& H_{0}: \beta_{5}=0 \\
& H_{1}: \beta_{5} \neq 0
\end{aligned}
$$

- Test 8 (continued): Consider the following two propositions:

$$
\begin{aligned}
& H_{0}: \beta_{5}=0 \\
& H_{1}: \beta_{5} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test $\times 1 \times 2$ or \quad test $\times 1 \times 2=0$
- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:
lincom _b[x1x2]

Determining the Order of Polynomial for a Continuous Explanatory Variable: Model 3

In practice, it is often unclear what order of polynomial function in a continuous explanatory variable is required to adequately represent the conditional effect of that explanatory variable on the regressand Y .

Model 3:

$$
\begin{align*}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\beta_{6} X_{i 1}^{3}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 1}^{4}+\beta_{9} X_{i 2}^{4}+u_{i} \tag{3}\\
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\beta_{6} X_{i 1}^{3}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 1}^{4}+\beta_{9} X_{i 2}^{4}
\end{align*}
$$

- Model 3 contains only two continuous explanatory variables -- X_{1} and X_{2}-- but nine regressors.
- The marginal effects on \mathbf{Y} of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in Model 3 are:

1. The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 3 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{3} \mathrm{X}_{\mathrm{i} 1}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+3 \beta_{6} \mathrm{X}_{\mathrm{il}}^{2}+4 \beta_{8} \mathrm{X}_{\mathrm{i1}}^{3}
$$

$$
=\text { a cubic function of } \mathrm{X}_{\mathrm{i} 1} \text { and linear function of } \mathrm{X}_{\mathrm{i} 2}
$$

2. The marginal effect of $\mathbf{X}_{\mathbf{2}}$ in Model 3 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 2}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}\right)}{\partial \mathrm{X}_{\mathrm{i} 2}} & =\beta_{2}+2 \beta_{4} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{7} \mathrm{X}_{\mathrm{i} 2}^{2}+4 \beta_{9} \mathrm{X}_{\mathrm{i} 2}^{3} \\
& =\text { a cubic function of } \mathrm{X}_{\mathrm{i} 2} \text { and linear function of } \mathrm{X}_{\mathrm{i} 1}
\end{aligned}
$$

- The conditional effects on Y of the two explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ in Model 3:

1. The conditional effect of $\mathbf{X}_{\mathbf{1}}$ in Model 3 is the partial, or ceteris paribus, relationship between X_{1} and the conditional mean value of Y for any given value of the other explanatory variable X_{2}.

Let \bar{X}_{2} = the sample mean value of the explanatory variable X_{2}. Then the conditional effect of $\mathbf{X}_{\mathbf{1}}$ in Model 3 is:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \bar{X}_{2}\right) & =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \bar{X}_{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \bar{X}_{2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \bar{X}_{2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \bar{X}_{2}^{3}+\beta_{8} X_{i 1}^{4}+\beta_{9} \bar{X}_{2}^{4} \\
& =\left(\beta_{0}+\beta_{2} \bar{X}_{2}+\beta_{4} \bar{X}_{2}^{2}+\beta_{7} \bar{X}_{2}^{3}+\beta_{9} \bar{X}_{2}^{4}\right)+\left(\beta_{1}+\beta_{5} \bar{X}_{2}\right) X_{i 1}+\beta_{3} X_{i 1}^{2}+\beta_{6} X_{i 1}^{3}+\beta_{8} X_{i 1}^{4}
\end{aligned}
$$

2. The conditional effect of $\mathbf{X}_{\mathbf{2}}$ in Model 3 is the partial, or ceteris paribus, relationship between X_{2} and the conditional mean value of Y for any given value of the other explanatory variable X_{1}.

Let $\bar{X}_{1}=$ the sample mean value of the explanatory variable X_{1}. Then the conditional effect of $\mathbf{X}_{\mathbf{2}}$ in Model 3 is:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \overline{\mathrm{X}}_{1}, \mathrm{X}_{\mathrm{i} 2}\right) & =\beta_{0}+\beta_{1} \overline{\mathrm{X}}_{1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \overline{\mathrm{X}}_{1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \bar{X}_{1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \overline{\mathrm{X}}_{1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \overline{\mathrm{X}}_{1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4} \\
& =\left(\beta_{0}+\beta_{1} \overline{\mathrm{X}}_{1}+\beta_{3} \overline{\mathrm{X}}_{1}^{2}+\beta_{6} \overline{\mathrm{X}}_{1}^{3}+\beta_{8} \bar{X}_{1}^{4}\right)+\left(\beta_{2}+\beta_{5} \bar{X}_{1}\right) \mathrm{X}_{\mathrm{i} 2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}
\end{aligned}
$$

```
\[
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1}^{2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\beta_{6} X_{i 1}^{3}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 1}^{4}+\beta_{9} X_{i 2}^{4}+u_{i} \tag{3}
\end{equation*}
\]
\[
\text { regress } y \times 1 \times 2 \times 1 \mathrm{sq} \times 2 \mathrm{sq} \times 1 \times 2 \times 13 r d \times 23 r d \times 14 \text { th } x 24 \text { th }
\]
```


Determining the Order of Polynomial for the Continuous Explanatory Variable \mathbf{X}_{1}

Perform the following sequence of hypothesis tests on the OLS estimates of regression equation (3), in particular, on the slope coefficients of the polynomial terms in the explanatory variable X_{1}.

- Test 1.1: Determine whether a third-order polynomial is adequate for representing the conditional effect on Y of X_{1}.

Perform the following two-tail t-test or F-test:

$$
\begin{aligned}
& H_{0}: \beta_{8}=0 \\
& H_{1}: \beta_{8} \neq 0
\end{aligned}
$$

Stata commands:

```
lincom _b[x14th]
test x14th = 0 or test x14th
```

Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a fourth-order polynomial for the conditional effect of X_{1} on Y .
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 1.2 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 1.2: Determine whether a second-order polynomial is adequate for representing the conditional effect on Y of X_{1}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \text { and } \beta_{6}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0 \text { and } / \text { or } \beta_{6} \neq 0
\end{aligned}
$$

Stata commands:

```
test x14th = 0, notest
test x13rd = 0, accumulate
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a third-order polynomial for the conditional effect of X_{1} on Y . The one coefficient exclusion restriction $\beta_{8}=0$ is a candidate for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 1.3 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 1.3: Determine whether a first-order polynomial is adequate for representing the conditional effect on Y of X_{1}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \text { and } \beta_{6}=0 \text { and } \beta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0 \text { and/or } \beta_{6} \neq 0 \text { and/or } \beta_{3} \neq 0
\end{aligned}
$$

Stata commands:

```
test x14th = 0, notest
test x13rd = 0, notest accumulate
test x1sq = 0, accumulate
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a second-order polynomial for the conditional effect of X_{1} on Y . The two coefficient exclusion restrictions $\beta_{8}=0$ and $\beta_{6}=0$ are candidates for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 1.4 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 1.4: Determine whether a zero-order polynomial is adequate for representing the conditional effect on Y of X_{1}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \text { and } \beta_{6}=0 \text { and } \beta_{3}=0 \text { and } \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0 \text { and/or } \beta_{6} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and } \beta_{1} \neq 0
\end{aligned}
$$

Stata commands:

```
test x14th = 0, notest
test x13rd = 0, notest accumulate
test x1sq = 0, notest accumulate
test x1 = 0, accumulate
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a first-order polynomial for the conditional effect of X_{1} on Y . The three coefficient exclusion restrictions $\beta_{8}=0, \beta_{6}=0$ and $\beta_{3}=0$ are candidates for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, stop testing. The four coefficient exclusion restrictions $\beta_{8}=0, \beta_{6}=0, \beta_{3}=0$ and $\beta_{1}=0$ are candidates for imposition in obtaining a simplified regression model.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

Determining the Order of Polynomial for the Continuous Explanatory Variable X \mathbf{X}_{2}

Perform the following sequence of hypothesis tests on the OLS estimates of regression equation (3), in particular, on the slope coefficients of the polynomial terms in the explanatory variable X_{2}.

- Test 2.1: Determine whether a third-order polynomial is adequate for representing the conditional effect on Y of X_{2}.

Perform the following two-tail t-test or F-test:

$$
\begin{aligned}
& H_{0}: \beta_{9}=0 \\
& H_{1}: \beta_{9} \neq 0
\end{aligned}
$$

Stata command:
lincom _b[x24th]
test x24th
Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a fourth-order polynomial for the conditional effect of $\mathrm{X}_{\mathbf{2}}$ on Y .
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 2.2 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 2.2: Determine whether a second-order polynomial is adequate for representing the conditional effect on Y of X_{2}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{9}=0 \text { and } \beta_{7}=0 \\
& \mathrm{H}_{1}: \beta_{9} \neq 0 \text { and } / \text { or } \beta_{7} \neq 0
\end{aligned}
$$

Stata command:

```
test x24th x23rd
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a third-order polynomial for the conditional effect of X_{2} on Y . The one coefficient exclusion restriction $\beta_{9}=0$ is a candidate for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 2.3 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} X_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 2.3: Determine whether a first-order polynomial is adequate for representing the conditional effect on Y of X_{2}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{9}=0 \text { and } \beta_{7}=0 \text { and } \beta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{9} \neq 0 \text { and/or } \beta_{7} \neq 0 \text { and/or } \beta_{4} \neq 0
\end{aligned}
$$

Stata command:

```
test x24th x23rd x2sq
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a second-order polynomial for the conditional effect of X_{2} on Y . The two coefficient exclusion restrictions $\beta_{9}=0$ and $\beta_{7}=0$ are candidates for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 2.4 below.

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{4} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{5} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

- Test 2.4: Determine whether a zero-order polynomial is adequate for representing the conditional effect on Y of X_{2}.

Perform the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{9}=0 \text { and } \beta_{7}=0 \text { and } \beta_{4}=0 \text { and } \beta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{9} \neq 0 \text { and/or } \beta_{7} \neq 0 \text { and/or } \beta_{4} \neq 0 \text { and } \beta_{2} \neq 0
\end{aligned}
$$

Stata command:

```
test x24th x23rd x2sq x2
```


Outcomes and Implied Decisions:

- If $\mathbf{H}_{\mathbf{0}}$ is rejected, stop testing. Choose a first-order polynomial for the conditional effect of X_{2} on Y . The three coefficient exclusion restrictions $\beta_{9}=0, \beta_{7}=0$ and $\beta_{4}=0$ are candidates for imposition in obtaining a simplified regression model.
- If $\mathbf{H}_{\mathbf{0}}$ is retained, stop testing. The four coefficient exclusion restrictions $\beta_{9}=0, \beta_{7}=0, \beta_{4}=0$ and $\beta_{2}=0$ are candidates for imposition in obtaining a simplified regression model.

Determining the Order of Polynomial for a Continuous Explanatory Variable: An Example of Model 3

Consider the following linear regression model for the average hourly wage rates of a cross-sectional sample of 252 female employees in the United States in 1976.

Model 3:

$\ln w_{i}=\beta_{0}+\beta_{1} \operatorname{ed}_{i}+\beta_{2} \exp _{i}+\beta_{3} \operatorname{ed}_{i}^{2}+\beta_{4} \exp _{i}^{2}+\beta_{5} \operatorname{ed}_{i} \exp _{i}+\beta_{6} \operatorname{ed}_{i}^{3}+\beta_{7} \exp _{i}^{3}+\beta_{8} \operatorname{ed}_{i}^{4}+\beta_{9} \exp _{i}^{4}+u_{i}$
$E\left(\ln w_{i} \mid \operatorname{ed}_{i}, \exp _{i}\right)=\beta_{0}+\beta_{1} e_{i}+\beta_{2} \exp _{i}+\beta_{3} e_{i}^{2}+\beta_{4} \exp _{i}^{2}+\beta_{5} e_{i} \exp _{i}+\beta_{6} \operatorname{ed}_{i}^{3}+\beta_{7} \exp _{i}^{3}+\beta_{8} e_{i}^{4}+\beta_{9} \exp _{i}^{4}$
The observable variables in Model 3 are defined as follows:
$\ln \mathrm{w}_{\mathrm{i}}=$ the natural logarithm of w_{i}, where is the average hourly wage rate of worker i in 1976;
$\mathrm{ed}_{\mathrm{i}} \quad=$ the years of completed formal education for worker i ;
$\exp _{\mathrm{i}}=$ the years of work experience accumulated by worker i.

- OLS estimation of Model 3 in Stata:

* Model 3 for Females
*

. regress lnw ed exp edsq expsq edexp ed3rd exp3rd ed4th exp4th if female == 1

Source	SS	df MS			Number of obs = 252		
					F(9, 242)	$=12.38$	
Model	15.6135128	91.7	483476		Prob > F	$=0.0000$	
Residual	33.9200943	242.14	165679		R-squared	$=0.3152$	
					Adj R-squared	0.2897	
Total	49.5336071	251.19	345048		Root MSE	. 37439	
lnw	Coef.	Std. Err	t	P> \| t		[95\% Conf.	Interval]
ed	-. 0415939	. 1858768	-0.22	0.823	-. 4077367	. 324549	
exp	. 1028106	. 0321942	3.19	0.002	. 039394	. 1662271	
edsq	. 0052875	. 0408062	0.13	0.897	-. 0750932	. 0856682	
expsq	-. 0076544	. 0027291	-2.80	0.005	-. 0130303	-. 0022786	
edexp	. 0002434	. 0009553	0.25	0.799	-. 0016383	. 002125	
ed3rd	-. 0003684	. 0031869	-0.12	0.908	-. 0066461	. 0059093	
exp3rd	. 0002109	. 000087	2.42	0.016	. 0000395	. 0003824	
ed4th	. 0000204	. 000082	0.25	0.804	-. 0001411	. 0001819	
exp4th	-1.96e-06	9.01e-07	-2.18	0.031	-3.73e-06	-1.85e-07	
_cons	. 9050268	. 4626025	1.96	0.052	-. 0062147	1.816268	

Tests to determine the order of polynomial for ed in Model $\mathbf{3}$ for female employees

- Test 1.1: Determine whether a third-order polynomial is adequate for representing the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of ed_{i}.

Perform on the OLS SRE for Model 3 the following two-tail t-test or F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0
\end{aligned}
$$

Stata commands and results for Test 1.1:
test ed4th
(1) ed4th $=0$

$$
\begin{array}{rll}
F\left(\begin{array}{rl}
1, \quad 242
\end{array}\right) & = & 0.06 \\
\text { Prob } & = & 0.8039
\end{array}
$$

lincom _b [ed4th]
(1) ed4th $=0$

| lnw | Coef. | Std. Err. | t | P>\|t| | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | . 0000204 | . 000082 | 0.25 | 0.804 | -. 0001411 | . 0001819 |

```
. return list
scalars:
            r(df) = 242
            r(se) = .0000820003024539
            r(estimate) = .0000203847630542
. display r(estimate)/r(se)
.24859375
. display 2*ttail(r(df), abs(r(estimate)/r(se)))
. }8038858
```


Outcome and Implied Decision of Test 1.1:

- p-value of $\mathbf{F}_{\mathbf{0}}$ and two-tail p-value of $\mathbf{t}_{\mathbf{0}}=\mathbf{0 . 8 0 3 9}$

Since the p-value of the calculated F and t statistics for test 1.1 equals 0.8039 , we can infer that a third-order polynomial may be adequate for representing the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of ed_{i}, and proceed to Test 1.2 below.

- Test 1.2: Determine whether a second-order polynomial is adequate for representing the conditional effect on $\ln W_{i}$ of ed_{i}.

Perform on the OLS SRE for Model 3 the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \text { and } \beta_{6}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0 \text { and/or } \beta_{6} \neq 0
\end{aligned}
$$

Stata commands and results for Test 1.2:
. test ed4th ed3rd
(1) ed4th $=0$
(2) ed3rd $=0$
$F(2,242)=0.88$ Prob $>F=0.4152$
. return list
scalars:

```
r(drop) = 0
r(df_r) = 242
                            r(F) = .8821689268440828
    r(df) = 2
    r(p) = .4152109068470182
```


Outcome and Implied Decision of Test 1.2:

- p-value of $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 4 1 5 2}$

Since the p-value of the calculated F statistic for test 1.2 equals 0.4152 , we can infer that a second-order polynomial may be adequate for representing the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of ed_{i}, and proceed to Test 1.3 below.

- Test 1.3: Determine whether a first-order polynomial is adequate for representing the conditional effect on $\ln W_{i}$ of ed_{i}.

Perform on the OLS SRE for Model 3 the following joint F-test:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{8}=0 \text { and } \beta_{6}=0 \text { and } \beta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{8} \neq 0 \text { and/or } \beta_{6} \neq 0 \text { and/or } \beta_{3} \neq 0
\end{aligned}
$$

Stata commands and results for Test 1.3:

```
. test ed4th ed3rd edsq
(1) ed4th = 0
(2) ed3rd = 0
(3) edsq = 0
    F( 3, 242) = 5.48
        Prob > F = 0.0012
```

. return list
scalars:

```
r(drop) = 0
r(df_r) = 242
    r(F) = 5.482515565912297
    r(df) = 3
    r(p) = .001163612607363
```


Outcome and Implied Decision of Test 1.3:

- p-value of $\mathbf{F}_{\mathbf{0}}=\mathbf{0 . 0 0 1 2}$

Since the p-value of the calculated F statistic for test 1.3 equals 0.0012 , we reject the null hypothesis that a first-order polynomial is adequate for representing the conditional effect on $\ln w_{i}$ of ed_{i}.

Results of Tests 1.1, 1.2 and 1.3

A second-order polynomial may be adequate for representing the conditional effect on $\ln w_{i}$ of e_{i}.

In other words, the coefficient exclusion restrictions $\beta_{8}=0$ and $\beta_{6}=0$ may be imposed on Model 3 for female employees.

Tests to determine the order of polynomial for exp in Model $\mathbf{3}$ for female employees

- Test 2.1: Determine whether a third-order polynomial is adequate for representing the conditional effect on $\ln W_{i}$ of $\exp _{i}$.

Perform on the OLS SRE for Model 3 the following two-tail t-test or F-test:
$\mathrm{H}_{0}: \beta_{9}=0$
$\mathrm{H}_{1}: \beta_{9} \neq 0$
Stata commands and results for Test 2.1:
. test exp4th
(1) exp4th $=0$
$F(1,242)=4.73$
Prob $>F=0.0306$
. return list
scalars:

```
r(drop) = 0
r(df_r) = 242
    r(F) = 4.733306717938799
    r(df) = 1
    r(p) = . 0305521435661833
```

```
    lincom _b[exp4th]
    (1) exp4th = 0
    lnw | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    (1) | -1.96e-06 9.01e-07 -2.18 0.031 -3.73e-06 -1.85e-07
. return list
scalars:
            r(df) = 242
            r(se) = 9.00524794364e-07
            r(estimate) = -1.95919651081e-06
. display r(estimate)/r(se)
-2.1756164
. display 2*ttail(r(df), abs(r(estimate)/r(se)))
.03055214
```

Outcome and Implied Decision of Test 2.1:

- \mathbf{p}-value of $\mathbf{F}_{\mathbf{0}}$ and two-tail \mathbf{p}-value of $\mathbf{t}_{\mathbf{0}}=\mathbf{0 . 0 3 0 5 5}$

Since the p-value of the calculated F and t statistics for test 2.1 equals 0.03055 , we reject the null hypothesis that a third-order polynomial is adequate for representing the conditional effect on $\ln w_{i}$ of $\exp _{i}$.

Results of Tests 2.1

A fourth-order polynomial is required to adequately represent the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of $\exp _{\mathrm{i}}$.

Results of Tests 1.1, 1.2 and 1.3

A second-order polynomial may be adequate for representing the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of ed_{i}.
In other words, the coefficient exclusion restrictions $\beta_{8}=0$ and $\beta_{6}=0$ may be imposed on Model 3 for female employees.

Final Step: Jointly Testing the Coefficient Restrictions

The results of these two sequences of hypothesis tests on the OLS estimates of Model 3 for female employees identify only two coefficient exclusion restrictions that might be imposed on the fourth-order polynomials in ed_{i} and $\exp _{\mathrm{i}}$ for female employees.

These candidate exclusion restrictions should always be jointly tested before they are imposed on Model 3, the unrestricted model.

In this case, Test 1.2 of the coefficient exclusion restrictions $\beta_{8}=0$ and $\beta_{6}=0$ is the required joint test. But recall that the p-value of the calculated F statistic for test 1.2 equals $\mathbf{0 . 4 1 5 2}$. We can therefore infer from these two sequences of hypothesis tests that a second-order polynomial is adequate for representing the conditional effect on $\ln w_{i}$ of ed ${ }_{\mathrm{i}}$, but that a fourth-order polynomial is required to adequately represent the conditional effect on $\ln \mathrm{w}_{\mathrm{i}}$ of $\exp _{\mathrm{i}}$.

The Implied Restricted Model for Female Employees

Model 3 for female employees is given by the population regression equation

$$
\begin{equation*}
\ln w_{i}=\beta_{0}+\beta_{1} \operatorname{ed}_{i}+\beta_{2} \exp _{i}+\beta_{3} e_{i}^{2}+\beta_{4} \exp _{i}^{2}+\beta_{5} \operatorname{ed}_{i} \exp _{i}+\beta_{6} \operatorname{ed}_{i}^{3}+\beta_{7} \exp _{i}^{3}+\beta_{8} e_{i}^{4}+\beta_{9} \exp _{i}^{4}+u_{i} \tag{3}
\end{equation*}
$$

Imposition of the coefficient exclusion restrictions $\beta_{8}=0$ and $\beta_{6}=0$ on Model 3 gives the following restricted regression model for female employees:

$$
\begin{equation*}
\ln \mathrm{w}_{\mathrm{i}}=\beta_{0}+\beta_{1} \operatorname{ed}_{\mathrm{i}}+\beta_{2} \exp _{\mathrm{i}}+\beta_{3} \operatorname{ed}_{\mathrm{i}}^{2}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{7} \exp _{\mathrm{i}}^{3}+\beta_{9} \exp _{\mathrm{i}}^{4}+\mathrm{u}_{\mathrm{i}} \tag{3f}
\end{equation*}
$$

- OLS estimation of Restricted Model 3f in Stata:

Source \|	SS	df MS			Number of obs $=$	$=252$
					F(7, 244)	$=15.68$
Model \|	15.3662132	72.1	517332		Prob > F	$=0.0000$
Residual \|	34.1673939	244.14	030303		R-squared	$=0.3102$
					Adj R-squared	$=0.2904$
Total \|	49.5336071	251.19	345048		Root MSE	$=.37421$
lnw \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
ed \|	-. 1052975	. 0588168	-1.79	0.075	-. 221151	. 0105561
exp \|	. 0993418	. 032072	3.10	0.002	. 0361686	. 162515
edsq	. 0078393	. 0020448	3.83	0.000	. 0038115	. 0118671
expsq \|	-. 0074103	. 002714	-2.73	0.007	-. 0127561	-. 0020645
edexp	. 0003417	. 0009348	0.37	0.715	-. 0014997	. 0021831
exp3rd \|	. 0002016	. 0000865	2.33	0.021	. 0000313	. 000372
exp4th \|	-1.85e-06	8.94e-07	-2.07	0.040	-3.61e-06	-8.59e-08
_cons \|	1.10083	. 4382619	2.51	0.013	. 2375704	1.964089

$$
\begin{equation*}
E\left(\ln w_{i} \mid \operatorname{ed}_{i}, \exp _{i}\right)=\beta_{0}+\beta_{1} e_{i}+\beta_{2} \exp _{i}+\beta_{3} \operatorname{ed}_{\mathrm{i}}^{2}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{7} \exp _{\mathrm{i}}^{3}+\beta_{9} \exp _{\mathrm{i}}^{4} \tag{3f}
\end{equation*}
$$

- The conditional effects on $\ln w_{i}$ of ed_{i} and $\exp _{i}$ in Model $\mathbf{3 f}$ for females:

1. The conditional effect of $\boldsymbol{e d}$ in Model $3 f$ is the partial, or ceteris paribus, relationship between ed and the conditional mean value of $\ln \mathbf{w}$ for any given value of the other explanatory variable exp.

Set $\exp _{i}=13=$ the sample median value of the explanatory variable \exp for female employees. Then the corresponding conditional effect of $\boldsymbol{e d}$ in Model $3 f$ is the following quadratic function of ed:

$$
\begin{aligned}
E\left(\ln w_{i} \mid \operatorname{ed}_{i}, \exp _{i}=13\right) & =\beta_{0}+\beta_{1} e_{i}+\beta_{2} 13+\beta_{3} \text { ed }_{\mathrm{i}}^{2}+\beta_{4} 13^{2}+\beta_{5} \mathrm{ed}_{\mathrm{i}} 13+\beta_{7} 13^{3}+\beta_{9} 13^{4} \\
& =\left(\beta_{0}+\beta_{2} 13+\beta_{4} 13^{2}+\beta_{7} 13^{3}+\beta_{9} 13^{4}\right)+\left(\beta_{1}+\beta_{5} 13\right) \mathrm{ed}_{\mathrm{i}}+\beta_{3} \mathrm{ed}_{\mathrm{i}}^{2}
\end{aligned}
$$

2. The conditional effect of \exp in Model $3 f$ is the partial, or ceteris paribus, relationship between \exp and the conditional mean value of $\ln \mathbf{w}$ for any given value of the other explanatory variable ed.

Set $\mathrm{ed}_{\mathrm{i}}=12=$ the sample median value of the explanatory variable ed for female employees. Then the corresponding conditional effect of $\boldsymbol{\operatorname { e x p }}$ in Model 3 f is the following quartic function of \exp :

$$
\begin{aligned}
E\left(\operatorname{ln~}_{\mathrm{i}} \mid \operatorname{ed}_{\mathrm{i}}=12, \exp _{\mathrm{i}}\right) & =\beta_{0}+\beta_{1} 12+\beta_{2} \exp _{\mathrm{i}}+\beta_{3} 12^{2}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} 12 \exp _{\mathrm{i}}+\beta_{7} \exp _{\mathrm{i}}^{3}+\beta_{9} \exp _{\mathrm{i}}^{4} \\
& =\left(\beta_{0}+\beta_{1} 12+\beta_{3} 12^{2}\right)+\left(\beta_{2}+\beta_{5} 12\right) \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{7} \exp _{\mathrm{i}}^{3}+\beta_{9} \exp _{\mathrm{i}}^{4}
\end{aligned}
$$

- Conditional effect on $\ln w_{i}$ of ed $_{i}$ for $\exp _{i}=\mathbf{1 3}$ in Model $\mathbf{3 f}$ for females:

$$
E\left(\ln w_{i} \mid \operatorname{ed}_{i}, \exp _{i}=13\right)=\left(\beta_{0}+\beta_{2} 13+\beta_{4} 13^{2}+\beta_{7} 13^{3}+\beta_{9} 13^{4}\right)+\left(\beta_{1}+\beta_{5} 13\right) \operatorname{ed}_{i}+\beta_{3} \mathrm{ed}_{\mathrm{i}}^{2}
$$

- Conditional effect on $\ln w_{i}$ of $\exp _{i}$ for $\mathbf{e d}_{i}=\mathbf{1 2}$ in Model $\mathbf{3 f}$ for females:

$$
E\left(\ln w_{i} \mid \operatorname{ed}_{i}=12, \exp _{i}\right)=\left(\beta_{0}+\beta_{1} 12+\beta_{3} 12^{2}\right)+\left(\beta_{2}+\beta_{5} 12\right) \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{7} \exp _{\mathrm{i}}^{3}+\beta_{9} \exp _{\mathrm{i}}^{4}
$$

