ECON 452* -- NOTE 3

Marginal Effects of Continuous Explanatory Variables: Constant or Variable?

Constant Marginal Effects of Explanatory Variables: A Starting Point

<u>Nature</u>: A continuous explanatory variable has a *constant* marginal effect on the dependent variable if it enters the regressor set only linearly and additively.

<u>Model 1</u>:

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + u_{i}$$
(1)

- Model 1 contains only <u>two</u> *explanatory variables* -- X_1 and X_2 -- and <u>two</u> *regressors*.
- The population regression function, or conditional mean function, $f(X_{i1}, X_{i2})$ in Model 1 takes the form

 $E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2}.$

<u>Model 1</u>:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

- $E(Y_i | X_{i1}, X_{i2}) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}.$
- The *marginal* effects on Y of the two explanatory variables X_1 and X_2 in equation (1) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X_1 and X_2 , with respect to each of the explanatory variables X_1 and X_2 .
 - **1.** The marginal effect of X_1 in Model 1 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial E(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2})}{\partial \mathbf{X}_{i1}} = \beta_{1} = a \text{ constant}$$

2. The marginal effect of X_2 in Model 1 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial E(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2})}{\partial \mathbf{X}_{i2}} = \beta_{2} = a \text{ constant}$$

M.G. Abbott

Example of Model 1:

 $price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$

where

- $price_i = the price of the i-th car (in US dollars);$
- wgt_i = the weight of the i-th car (in pounds);
- $mpg_i =$ the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon).

Variable Marginal Effects and Interaction Terms: Squares and Cross Products of Continuous Explanatory Variables

<u>Nature</u>: Interactions between two *continuous* variables refer to products of pairs of explanatory variables.

- If X_{ij} and X_{ih} are two continuous explanatory variables, the interaction term between them is the product $X_{ij}X_{ih}$.
- The interaction of the variable X_{ij} with itself is simply the product $X_{ij}X_{ij} = X_{ij}^2$.
- Inclusion of these regressors in a linear regression model allows for *variable* -- or *nonconstant* -- marginal effects of the explanatory variables on the conditional mean of the dependent variable Y.
- *<u>Usage</u>: Interaction terms* between *continuous* variables allow the marginal effect of one explanatory variable to be a linear function of both itself and other explanatory variables.

<u>Model 2</u>:

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \mathbf{u}_{i}$$
(2)

• Model 2 contains only <u>two</u> *explanatory* variables $-X_1$ and X_2 -- but <u>five</u> regressors.

• Formally, the population regression function $E(Y_i | X_{i1}, X_{i2}) = f(X_{i1}, X_{i2})$ in PRE (2) can be derived as a second-order Taylor series approximation to the function $f(X_{i1}, X_{i2})$. A second-order Taylor series approximation to the population regression function $f(X_{i1}, X_{i2})$ takes the form

$$E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2}.$$

- The *marginal* effects on Y of the two explanatory variables X₁ and X₂ in equation (2) are obtained analytically by partially differentiating Y, or the conditional mean of Y given X₁ and X₂, with respect to each of the explanatory variables X₁ and X₂.
 - **1.** The marginal effect of X_1 in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$
$$= \text{ a linear function of both } \mathbf{X}_{i1} \text{ and } \mathbf{X}_{i2}$$

2. The marginal effect of X_2 in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$
$$= \text{ a linear function of both } \mathbf{X}_{i1} \text{ and } \mathbf{X}_{i2}$$

Squares of Continuous Explanatory Variables

Purpose: Allow for *increasing* or *decreasing* marginal effects of an explanatory variable on the dependent variable -- sometimes called *increasing* or *decreasing* marginal returns.

Determining whether the marginal effect of X_1 is increasing or decreasing

• Whether the *marginal* effect of X_1 is *increasing* or *decreasing* -- i.e., whether X_1 exhibits *increasing* or *decreasing* marginal returns -- is determined by the sign of the regression coefficient β_3 on the regressor X_{i1}^2 in Model 2.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + u_{i}$$
(2)

• We previously saw that the *marginal* effect of X_1 in Model 2 is given by the *first-order* partial derivative of Y_i , or $E(Y_i | X_{i1}, X_{i2})$, with respect to X_{i1} :

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$

• To determine whether the *marginal* effect of X_1 in Model 2 is *increasing* or *decreasing* in X_1 , we need to examine the *second-order* partial derivative of Y_i , or $E(Y_i | X_{i1}, X_{i2})$, with respect to X_{i1} :

$$\frac{\partial^2 Y_i}{\partial X_{i1}^2} = \frac{\partial}{\partial X_{i1}} \frac{\partial E(Y_i | X_{i1}, X_{i2})}{\partial X_{i1}} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial^2 X_{i1}^2} = 2\beta_3$$

$$\frac{\partial^{2} \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}^{2}} = \frac{\partial}{\partial \mathbf{X}_{i1}} \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} \, \big| \, \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \frac{\partial^{2} \mathbf{E} \left(\mathbf{Y}_{i} \, \big| \, \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial^{2} \mathbf{X}_{i1}^{2}} = 2\beta_{3}$$

1. The marginal effect of X_1 is increasing in X_1 -- meaning X_1 exhibits increasing marginal returns -- when

$$\frac{\partial^2 \mathbf{Y}_i}{\partial \mathbf{X}_{i1}^2} = \frac{\partial^2 \mathbf{E} \left(\mathbf{Y}_i \, \big| \, \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial^2 \mathbf{X}_{i1}^2} = 2\beta_3 > 0 \qquad \text{i.e., when } \beta_3 > 0$$

2. The marginal effect of X_1 is decreasing in X_1 -- meaning X_1 exhibits decreasing marginal returns -- when

$$\frac{\partial^2 Y_i}{\partial X_{i1}^2} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial^2 X_{i1}^2} = 2\beta_3 < 0 \qquad \text{i.e., when } \beta_3 < 0$$

Determining whether the *marginal* effect of X₂ is *increasing* or *decreasing*

• Whether the *marginal* effect of X_2 is *increasing* or *decreasing* -- i.e., whether X_2 exhibits *increasing* or *decreasing* marginal returns -- is determined by the sign of the regression coefficient β_4 on the regressor X_{i2}^2 in Model 2.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + u_{i}$$
(2)

• We previously saw that the *marginal* effect of X_2 in Model 2 is given by the *first-order* partial derivative of Y_i , or $E(Y_i | X_{i1}, X_{i2})$, with respect to X_{i2} :

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$

• To determine whether the *marginal* effect of X_2 in Model 2 is *increasing* or *decreasing* in X_2 , we need to examine the *second-order* partial derivative of Y_i , or $E(Y_i | X_{i1}, X_{i2})$, with respect to X_{i2} :

$$\frac{\partial^{2} Y_{i}}{\partial X_{i2}^{2}} = \frac{\partial}{\partial X_{i2}} \frac{\partial E(Y_{i} | X_{i1}, X_{i2})}{\partial X_{i2}} = \frac{\partial^{2} E(Y_{i} | X_{i1}, X_{i2})}{\partial^{2} X_{i2}^{2}} = 2\beta_{4}$$

$$\frac{\partial^2 Y_i}{\partial X_{i2}^2} = \frac{\partial}{\partial X_{i2}} \frac{\partial E(Y_i | X_{i1}, X_{i2})}{\partial X_{i2}} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial^2 X_{i2}^2} = 2\beta_4$$

1. The marginal effect of X_2 is increasing in X_2 -- meaning X_2 exhibits increasing marginal returns -- when

$$\frac{\partial^2 Y_i}{\partial X_{i2}^2} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial^2 X_{i2}^2} = 2\beta_4 > 0 \quad \text{ i.e., when } \beta_4 > 0$$

2. The marginal effect of X_2 is decreasing in X_2 -- meaning X_2 exhibits decreasing marginal returns -- when

$$\frac{\partial^2 Y_i}{\partial X_{i2}^2} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial^2 X_{i2}^2} = 2\beta_4 < 0 \quad \text{ i.e., when } \beta_4 < 0$$

Products of Two Continuous Explanatory Variables

Purpose: Allow for relationships of *complementarity* or *substitutability* between X_1 and X_2 in determining Y.

• Whether X_1 and X_2 are *complementary* or *substitutable* is determined by the sign of the regression coefficient β_5 on the interaction term $X_{i1}X_{i2}$ in Model 2.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \beta_{3} X_{i1}^{2} + \beta_{4} X_{i2}^{2} + \beta_{5} X_{i1} X_{i2} + \mathbf{u}_{i}$$
(2)

• We previously saw that the *marginal* effect of X_1 in Model 2 is given by the *first-order* partial derivative of Y_i , or $E(Y_i | X_{i1}, X_{i2})$, with respect to X_{i1} :

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$
$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$

• To determine whether the *marginal* effect of X₁ (X₂) in Model 2 is *increasing* or *decreasing* in X₂ (X₁), we need to examine the *second-order* cross partial derivative of Y_i, or E(Y_i | X_{i1}, X_{i2}), with respect to X_{i1} and X_{i2}:

$$\frac{\partial^2 \mathbf{Y}_i}{\partial \mathbf{X}_{i2} \partial \mathbf{X}_{i1}} = \frac{\partial^2 \mathbf{E} \big(\mathbf{Y}_i \, \big| \, \mathbf{X}_{i1}, \mathbf{X}_{i2} \big)}{\partial \mathbf{X}_{i2} \partial \mathbf{X}_{i1}} = \beta_5$$

The marginal effect of X₁ is increasing in X₂ (or the marginal effect of X₂ is increasing in X₁) -- meaning X₁ and X₂ are complementary -- when

$$\frac{\partial^2 Y_i}{\partial X_{i2} \partial X_{i1}} = \frac{\partial^2 E(Y_i | X_{i1}, X_{i2})}{\partial X_{i2} \partial X_{i1}} = \beta_5 > 0$$

2. The marginal effect of X_1 is decreasing in X_2 (or the marginal effect of X_2 is decreasing in X_1) -- meaning X_1 and X_2 are substitutable -- when

$$\frac{\partial^2 Y_i}{\partial X_{i2} \partial X_{i1}} = \frac{\partial^2 E \Big(Y_i \, \big| \, X_{i1}, X_{i2} \Big)}{\partial X_{i2} \partial X_{i1}} = \beta_5 < 0$$

Example of Model 2:

price_i = $\beta_0 + \beta_1 wgt_i + \beta_2 mpg_i + \beta_3 wgt_i^2 + \beta_4 mpg_i^2 + \beta_5 wgt_i mpg_i + u_i$.

where

- $price_i = the price of the i-th car (in US dollars);$
- $wgt_i = the weight of the i-th car (in pounds);$
- wgt_i^2 = the square of wgt_i ;
- mpg_i = the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon);
- $mpg_i^2 = the square of mpg_i;$
- $wgt_impg_i = the product of wgt_i and mpg_i for the i-th car.$

C Review: Models 1 and 2 in Two *Continuous* Explanatory Variables X₁ and X₂

<u>Model 1</u>: Constant marginal effects of the explanatory variables X₁ and X₂

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

 $E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2}$

- Model 1 contains only <u>two continuous explanatory variables</u> -- X_1 and X_2 -- and <u>two regressors</u>.
- The marginal effects on Y of the explanatory variables X_1 and X_2 are:
 - **1.** The marginal effect of X_1 in Model 1 is:

$$\frac{\partial \, \boldsymbol{Y}_{i}}{\partial \, \boldsymbol{X}_{i1}} = \frac{\partial E \Big(\, \boldsymbol{Y}_{i} \, \big| \, \boldsymbol{X}_{i1}, \, \boldsymbol{X}_{i2} \Big)}{\partial \, \boldsymbol{X}_{i1}} \, = \, \beta_{1} \, = a \, \textit{constant}$$

2. The marginal effect of X_2 in Model 1 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial E(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2})}{\partial \mathbf{X}_{i2}} = \beta_{2} = a \text{ constant}$$

ECON 452* -- Note 3: Marginal Effects: Constant or Variable?

<u>Model 2</u>:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + u_{i}$$
(2)

- $E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2}$
- Model 2 contains only <u>two</u> continuous explanatory variables -- X_1 and X_2 -- but <u>five</u> regressors.
- The *marginal* effects on Y of the two explanatory variables X_1 and X_2 are:
 - **1.** The marginal effect of X_1 in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial E \Big(\mathbf{Y}_{i} \big| \mathbf{X}_{i1}, \mathbf{X}_{i2} \Big)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2} = a \text{ linear function of both } \mathbf{X}_{i1} \text{ and } \mathbf{X}_{i2}$$

2. The marginal effect of X_2 in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1} = \text{a linear function of both } \mathbf{X}_{i1} \text{ and } \mathbf{X}_{i2}$$

Example of Model 1:

 $price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$

where

 $price_i = the price of the i-th car (in US dollars)$

 $wgt_i = the weight of the i-th car (in pounds)$

 $mpg_i =$ the fuel efficiency of the i-th car (in miles per gallon)

Example of Model 2:

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}^{2} + \beta_{5}wgt_{i}mpg_{i} + u_{i}$$

where

price_i = the price of the i-th car (in US dollars) wgt_i = the weight of the i-th car (in pounds) wgt_i² = the square of wgt_i for the i-th car mpg_i = the fuel efficiency of the i-th car (in miles per gallon) mpg_i² = the square of mpg_i for the i-th car wgt_impg_i = the product (interaction) of wgt_i and mpg_i for the i-th car

ECON 452* -- Note 3: Marginal Effects: Constant or Variable?

□ Hypothesis Tests on Model 2

- <u>*Test 1*</u>: Test the hypothesis that the *marginal* effect of X_1 on Y in Model 2 is zero for all values of X_1 and X_2 .
- The marginal effect of X₁ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$

- Sufficient conditions for $\partial Y_i / \partial X_{i1} = 0$ for all i are $\beta_1 = 0$ and $\beta_3 = 0$ and $\beta_5 = 0$. We therefore want to test these three coefficient exclusion restrictions.
- The *null* and *alternative* hypotheses are:

H₀: $\beta_1 = 0$ and $\beta_3 = 0$ and $\beta_5 = 0$ H₁: $\beta_1 \neq 0$ and/or $\beta_3 \neq 0$ and/or $\beta_5 \neq 0$

• First, estimate Model 2 by OLS using the following *Stata* regress command:

regress y x1 x2 x1sq x2sq x1x2

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x1 x1sq x1x2

- <u>*Test 2*</u>: Test the hypothesis that the *marginal* effect of X_1 on Y in Model 2 is *constant*.
- The marginal effect of X₁ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$
$$= \beta_{1} \text{ (a constant)} \quad \text{if } \beta_{3} = 0 \text{ and } \beta_{5} = 0$$

- Sufficient conditions for $\partial Y_i / \partial X_{i1} = \beta_1$ (a constant) for all i are $\beta_3 = 0$ and $\beta_5 = 0$. We therefore want to test these two coefficient exclusion restrictions.
- The *null* and *alternative* hypotheses are:

$$\begin{split} H_0: \ \beta_3 &= 0 \ and \ \beta_5 = 0 \\ H_1: \ \beta_3 &\neq 0 \ and/or \ \beta_5 \neq 0 \end{split}$$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x1sq x1x2

- <u>*Test 3*</u>: Test the hypothesis that the *marginal* effect of X₂ on Y in Model 2 is zero for all values of X₁ and X₂.
- The marginal effect of X₂ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$

- Sufficient conditions for $\partial Y_i / \partial X_{i2} = 0$ for all i are $\beta_2 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$. We therefore want to test these three coefficient restrictions.
- The *null* and *alternative* hypotheses are:

$$\begin{split} H_0: \ \beta_2 &= 0 \ and \ \beta_4 = 0 \ and \ \beta_5 = 0 \\ H_1: \ \beta_2 &\neq 0 \ and/or \ \beta_4 \neq 0 \ and/or \ \beta_5 \neq 0 \end{split}$$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test $x^2 x^2 sq x^1x^2$

- <u>*Test 4*</u>: Test the hypothesis that the *marginal* effect of X₂ on Y in Model 2 is *constant*.
- The marginal effect of X₂ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$
$$= \beta_{2} \text{ (a constant)} \quad \text{if } \beta_{4} = 0 \text{ and } \beta_{5} = 0$$

- Sufficient conditions for $\partial Y_i / \partial X_{i2} = \beta_2$ (a constant) for all i are $\beta_4 = 0$ and $\beta_5 = 0$. We therefore want to test these two coefficient exclusion restrictions.
- The *null* and *alternative* hypotheses are:

H₀:
$$\beta_4 = 0$$
 and $\beta_5 = 0$
H₁: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x2sq x1x2

• <u>*Test 5:*</u> Test the hypothesis that *both* the marginal effect of X_1 on Y and the marginal effect of X_2 on Y are *constants*.

This is equivalent to testing whether the three additional regressors that Model 2 introduces into Model 1 – namely X_{i1}^2 , X_{i2}^2 and $X_{i1}X_{i2}$ – are necessary in order to adequately represent the relationship of Y_i to the two continuous explanatory variables X_{i1} and X_{i2} .

• The marginal effects of X_1 and X_2 in Model 2 are:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$
$$= \beta_{1} \qquad \text{if } \beta_{3} = 0 \text{ and } \beta_{5} = 0$$

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$
$$= \beta_{2} \qquad \text{if} \quad \beta_{4} = 0 \text{ and } \beta_{5} = 0$$

• Sufficient conditions for both marginal effects to be constants for all i are $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$. We therefore want to test jointly these three coefficient restrictions.

- <u>*Test 5 (continued)*</u>: Test the hypothesis that *both* the marginal effect of X_1 on Y and the marginal effect of X_2 on Y are *constants*.
- The *null* and *alternative* hypotheses are:

H ₀ : $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$	\Rightarrow	Model 1
$H_1: \beta_3 \neq 0 \text{ and/or } \beta_4 \neq 0 \text{ and/or } \beta_5 \neq 0$	\Rightarrow	Model 2

Note that the null hypothesis H_0 implies that Model 1 is empirically adequate, whereas the alternative hypothesis H_1 implies rejection of Model 1 in favor of Model 2.

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x1sq x2sq x1x2

- <u>Test 6</u>: Test the hypothesis that the marginal effect of X₁ on Y is unrelated to, or does not depend upon, X₁.
- The marginal effect of X₁ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$

- A sufficient condition for $\partial Y_i / \partial X_{i1}$ to be unrelated to X_{i1} for all i is $\beta_3 = 0$. We therefore want to test this coefficient exclusion restriction on Model 2.
- The *null* and *alternative* hypotheses are:

$$H_0: \beta_3 = 0$$
$$H_1: \beta_3 \neq 0$$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x1sq Or test x1sq = 0

• Equivalently, compute a **two-tail t-test** of H_0 against H_1 using the following *Stata* **lincom** command:

```
lincom _b[x1sq]
```

- <u>Test 7</u>: Test the hypothesis that the marginal effect of X₂ on Y is unrelated to, or does not depend upon, X₂.
- The marginal effect of X₂ in Model 2 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1}$$

- A sufficient condition for $\partial Y_i / \partial X_{i2}$ to be unrelated to X_{i2} for all i is $\beta_4 = 0$. We therefore want to test this coefficient exclusion restriction on Model 2.
- The *null* and *alternative* hypotheses are:

$$H_0: \beta_4 = 0$$
$$H_1: \beta_4 \neq 0$$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x2sq Or test x2sq = 0

• Equivalently, compute a **two-tail t-test** of H_0 against H_1 using the following *Stata* **lincom** command:

```
lincom _b[x2sq]
```

- <u>*Test 8:*</u> Consider the following two propositions:
 - 1. The *marginal* effect of X_1 on Y is unrelated to X_2 in Model 2.
 - 2. The *marginal* effect of X_2 on Y is unrelated to X_1 in Model 2.
- Recall that the marginal effects on Y of X_1 and X_2 in Model 2 are:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2}$$

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E}(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2})}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4}\mathbf{X}_{i2} + \beta_{5}\mathbf{X}_{i1}$$

Propositions 1 and 2 imply the same coefficient exclusion restriction on Model 2, namely the restriction $\beta_5 = 0$.

- 1. The *marginal* effect of X_1 on Y is unrelated to X_2 if $\beta_5 = 0$ in Model 2.
- 2. The *marginal* effect of X_2 on Y is unrelated to X_1 if $\beta_5 = 0$ in Model 2.
- The *null* and *alternative* hypotheses for both these propositions are:

$$H_0: \beta_5 = 0$$
$$H_1: \beta_5 \neq 0$$

• <u>*Test 8 (continued):*</u> Consider the following two propositions:

$$H_0: \beta_5 = 0$$
$$H_1: \beta_5 \neq 0$$

• Compute an **F-test** of H_0 against H_1 using the following *Stata* test command:

test x1x2 Or test x1x2 = 0

• Equivalently, compute a **two-tail t-test** of H_0 against H_1 using the following *Stata* **lincom** command:

lincom _b[x1x2]

Determining the Order of Polynomial for a Continuous Explanatory Variable: Model 3

In practice, it is often unclear what order of polynomial function in a continuous explanatory variable is required to adequately represent the conditional effect of that explanatory variable on the regressand Y.

<u>Model 3</u>:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}X_{i1}^{3} + \beta_{7}X_{i2}^{3} + \beta_{8}X_{i1}^{4} + \beta_{9}X_{i2}^{4} + u_{i}$$

$$E(Y_{i} | X_{i1}, X_{i2}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}X_{i1}^{3} + \beta_{7}X_{i2}^{3} + \beta_{8}X_{i1}^{4} + \beta_{9}X_{i2}^{4}$$
(3)

- Model 3 contains only <u>two continuous explanatory variables</u> -- X₁ and X₂ -- but <u>nine regressors</u>.
- The marginal effects on Y of the two explanatory variables X_1 and X_2 in Model 3 are:
 - **1.** The marginal effect of X_1 in Model 3 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i1}} = \frac{\partial \mathbf{E} \Big(\mathbf{Y}_{i} \big| \mathbf{X}_{i1}, \mathbf{X}_{i2} \Big)}{\partial \mathbf{X}_{i1}} = \beta_{1} + 2\beta_{3} \mathbf{X}_{i1} + \beta_{5} \mathbf{X}_{i2} + 3\beta_{6} \mathbf{X}_{i1}^{2} + 4\beta_{8} \mathbf{X}_{i1}^{3}$$
$$= a \text{ cubic function of } \mathbf{X}_{i1} \text{ and linear function of } \mathbf{X}_{i2}$$

2. The marginal effect of X_2 in Model 3 is:

$$\frac{\partial \mathbf{Y}_{i}}{\partial \mathbf{X}_{i2}} = \frac{\partial \mathbf{E} \left(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \mathbf{X}_{i2} \right)}{\partial \mathbf{X}_{i2}} = \beta_{2} + 2\beta_{4} \mathbf{X}_{i2} + \beta_{5} \mathbf{X}_{i1} + 3\beta_{7} \mathbf{X}_{i2}^{2} + 4\beta_{9} \mathbf{X}_{i2}^{3}$$
$$= \text{a cubic function of } \mathbf{X}_{i2} \text{ and linear function of } \mathbf{X}_{i1}$$

- The *conditional* effects on Y of the two explanatory variables X_1 and X_2 in Model 3:
 - 1. The conditional effect of X_1 in Model 3 is the partial, or *ceteris paribus*, relationship between X_1 and the conditional mean value of Y for any given value of the other explanatory variable X_2 .

Let \overline{X}_2 = the sample mean value of the explanatory variable X_2 . Then the **conditional effect of X**₁ in Model 3 is:

$$E(\mathbf{Y}_{i} | \mathbf{X}_{i1}, \overline{\mathbf{X}}_{2}) = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \overline{\mathbf{X}}_{2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \overline{\mathbf{X}}_{2}^{2} + \beta_{5} \mathbf{X}_{i1} \overline{\mathbf{X}}_{2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \overline{\mathbf{X}}_{2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \overline{\mathbf{X}}_{2}^{4}$$
$$= (\beta_{0} + \beta_{2} \overline{\mathbf{X}}_{2} + \beta_{4} \overline{\mathbf{X}}_{2}^{2} + \beta_{7} \overline{\mathbf{X}}_{2}^{3} + \beta_{9} \overline{\mathbf{X}}_{2}^{4}) + (\beta_{1} + \beta_{5} \overline{\mathbf{X}}_{2}) \mathbf{X}_{i1} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{8} \mathbf{X}_{i1}^{4}$$

2. The conditional effect of X_2 in Model 3 is the partial, or *ceteris paribus*, relationship between X_2 and the conditional mean value of Y for any given value of the other explanatory variable X_1 .

Let \overline{X}_1 = the sample mean value of the explanatory variable X_1 . Then the **conditional effect of X**₂ in Model 3 is:

$$E(\mathbf{Y}_{i} | \overline{\mathbf{X}}_{1}, \mathbf{X}_{i2}) = \beta_{0} + \beta_{1}\overline{\mathbf{X}}_{1} + \beta_{2}\mathbf{X}_{i2} + \beta_{3}\overline{\mathbf{X}}_{1}^{2} + \beta_{4}\mathbf{X}_{i2}^{2} + \beta_{5}\overline{\mathbf{X}}_{1}\mathbf{X}_{i2} + \beta_{6}\overline{\mathbf{X}}_{1}^{3} + \beta_{7}\mathbf{X}_{i2}^{3} + \beta_{8}\overline{\mathbf{X}}_{1}^{4} + \beta_{9}\mathbf{X}_{i2}^{4}$$
$$= (\beta_{0} + \beta_{1}\overline{\mathbf{X}}_{1} + \beta_{3}\overline{\mathbf{X}}_{1}^{2} + \beta_{6}\overline{\mathbf{X}}_{1}^{3} + \beta_{8}\overline{\mathbf{X}}_{1}^{4}) + (\beta_{2} + \beta_{5}\overline{\mathbf{X}}_{1})\mathbf{X}_{i2} + \beta_{4}\mathbf{X}_{i2}^{2} + \beta_{7}\mathbf{X}_{i2}^{3} + \beta_{9}\mathbf{X}_{i2}^{4}$$

ECON 452* -- Note 3: Marginal Effects: Constant or Variable?

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

regress y x1 x2 x1sq x2sq x1x2 x13rd x23rd x14th x24th

Determining the Order of Polynomial for the Continuous Explanatory Variable X₁

Perform the following sequence of hypothesis tests on the OLS estimates of regression equation (3), in particular, on the slope coefficients of the polynomial terms in the explanatory variable X_1 .

• <u>Test 1.1</u>: Determine whether a *third-order* polynomial is adequate for representing the conditional effect on Y of X₁.

Perform the following two-tail t-test or F-test:

 $H_0: \beta_8 = 0$ $H_1: \beta_8 \neq 0$

Stata commands:

lincom _b[x14th]
test x14th = 0 or test x14th

- If H_0 is *rejected*, stop testing. Choose a fourth-order polynomial for the conditional effect of X_1 on Y.
- If H₀ is *retained*, proceed to Test 1.2 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 1.2</u>: Determine whether a *second-order* polynomial is adequate for representing the conditional effect on Y of X_1 .

Perform the following joint F-test:

H₀: $\beta_8 = 0$ and $\beta_6 = 0$ H₁: $\beta_8 \neq 0$ and/or $\beta_6 \neq 0$

Stata commands:

test x14th = 0, notest
test x13rd = 0, accumulate

- If H_0 is *rejected*, stop testing. Choose a **third-order polynomial** for the conditional effect of X_1 on Y. The one coefficient exclusion restriction $\beta_8 = 0$ is a candidate for imposition in obtaining a simplified regression model.
- If H₀ is *retained*, proceed to Test 1.3 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 1.3</u>: Determine whether a *first-order* polynomial is adequate for representing the conditional effect on Y of X_1 .

Perform the following joint F-test:

H₀: $\beta_8 = 0$ and $\beta_6 = 0$ and $\beta_3 = 0$ H₁: $\beta_8 \neq 0$ and/or $\beta_6 \neq 0$ and/or $\beta_3 \neq 0$

Stata commands:

test x14th = 0, notest test x13rd = 0, notest accumulate test x1sq = 0, accumulate

- If H_0 is *rejected*, stop testing. Choose a second-order polynomial for the conditional effect of X_1 on Y. The two coefficient exclusion restrictions $\beta_8 = 0$ and $\beta_6 = 0$ are candidates for imposition in obtaining a simplified regression model.
- If H₀ is *retained*, proceed to Test 1.4 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 1.4</u>: Determine whether a *zero-order* polynomial is adequate for representing the conditional effect on Y of X_1 .

Perform the following joint F-test:

H₀: $\beta_8 = 0$ and $\beta_6 = 0$ and $\beta_3 = 0$ and $\beta_1 = 0$ H₁: $\beta_8 \neq 0$ and/or $\beta_6 \neq 0$ and/or $\beta_3 \neq 0$ and $\beta_1 \neq 0$

Stata commands:

test x14th = 0, notest test x13rd = 0, notest accumulate test x1sq = 0, notest accumulate test x1 = 0, accumulate

- If H_0 is *rejected*, stop testing. Choose a first-order polynomial for the conditional effect of X_1 on Y. The three coefficient exclusion restrictions $\beta_8 = 0$, $\beta_6 = 0$ and $\beta_3 = 0$ are candidates for imposition in obtaining a simplified regression model.
- If H_0 is *retained*, stop testing. The four coefficient exclusion restrictions $\beta_8 = 0$, $\beta_6 = 0$, $\beta_3 = 0$ and $\beta_1 = 0$ are candidates for imposition in obtaining a simplified regression model.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}^{2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2} + \beta_{6}X_{i1}^{3} + \beta_{7}X_{i2}^{3} + \beta_{8}X_{i1}^{4} + \beta_{9}X_{i2}^{4} + u_{i}$$
(3)

Determining the Order of Polynomial for the Continuous Explanatory Variable X₂

Perform the following sequence of hypothesis tests on the OLS estimates of regression equation (3), in particular, on the slope coefficients of the polynomial terms in the explanatory variable X_2 .

• <u>**Test 2.1**</u>: Determine whether a *third-order* polynomial is adequate for representing the conditional effect on Y of X_2 .

Perform the following two-tail t-test or F-test:

 $H_0: \beta_9 = 0$ $H_1: \beta_9 \neq 0$

Stata command:

lincom _b[x24th]
test x24th

- If H_0 is *rejected*, stop testing. Choose a fourth-order polynomial for the conditional effect of X_2 on Y.
- If H₀ is *retained*, proceed to Test 2.2 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 2.2</u>: Determine whether a *second-order* polynomial is adequate for representing the conditional effect on Y of X_2 .

Perform the following joint F-test:

H₀: $\beta_9 = 0$ and $\beta_7 = 0$ H₁: $\beta_9 \neq 0$ and/or $\beta_7 \neq 0$

Stata command:

test x24th x23rd

- If H_0 is *rejected*, stop testing. Choose a **third-order polynomial** for the conditional effect of X_2 on Y. The one coefficient exclusion restriction $\beta_9 = 0$ is a candidate for imposition in obtaining a simplified regression model.
- If H₀ is *retained*, proceed to Test 2.3 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 2.3</u>: Determine whether a *first-order* polynomial is adequate for representing the conditional effect on Y of X_2 .

Perform the following joint F-test:

H₀: $\beta_9 = 0$ and $\beta_7 = 0$ and $\beta_4 = 0$ H₁: $\beta_9 \neq 0$ and/or $\beta_7 \neq 0$ and/or $\beta_4 \neq 0$

Stata command:

test x24th x23rd x2sq

- If H_0 is *rejected*, stop testing. Choose a **second-order polynomial** for the conditional effect of X_2 on Y. The two coefficient exclusion restrictions $\beta_9 = 0$ and $\beta_7 = 0$ are candidates for imposition in obtaining a simplified regression model.
- If H₀ is *retained*, proceed to Test 2.4 below.

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{X}_{i1} + \beta_{2} \mathbf{X}_{i2} + \beta_{3} \mathbf{X}_{i1}^{2} + \beta_{4} \mathbf{X}_{i2}^{2} + \beta_{5} \mathbf{X}_{i1} \mathbf{X}_{i2} + \beta_{6} \mathbf{X}_{i1}^{3} + \beta_{7} \mathbf{X}_{i2}^{3} + \beta_{8} \mathbf{X}_{i1}^{4} + \beta_{9} \mathbf{X}_{i2}^{4} + \mathbf{u}_{i}$$
(3)

• <u>Test 2.4</u>: Determine whether a *zero-order* polynomial is adequate for representing the conditional effect on Y of X_2 .

Perform the following joint F-test:

H₀: $\beta_9 = 0$ and $\beta_7 = 0$ and $\beta_4 = 0$ and $\beta_2 = 0$ H₁: $\beta_9 \neq 0$ and/or $\beta_7 \neq 0$ and/or $\beta_4 \neq 0$ and $\beta_2 \neq 0$

Stata command:

test x24th x23rd x2sq x2

- If H_0 is *rejected*, stop testing. Choose a first-order polynomial for the conditional effect of X_2 on Y. The three coefficient exclusion restrictions $\beta_9 = 0$, $\beta_7 = 0$ and $\beta_4 = 0$ are candidates for imposition in obtaining a simplified regression model.
- If H_0 is *retained*, stop testing. The four coefficient exclusion restrictions $\beta_9 = 0$, $\beta_7 = 0$, $\beta_4 = 0$ and $\beta_2 = 0$ are candidates for imposition in obtaining a simplified regression model.

Determining the Order of Polynomial for a Continuous Explanatory Variable: An Example of Model 3

Consider the following linear regression model for the average hourly wage rates of a cross-sectional sample of 252 female employees in the United States in 1976.

<u>Model 3</u>:

$$\ln w_{i} = \beta_{0} + \beta_{1}ed_{i} + \beta_{2} \exp_{i} + \beta_{3}ed_{i}^{2} + \beta_{4} \exp_{i}^{2} + \beta_{5}ed_{i} \exp_{i} + \beta_{6}ed_{i}^{3} + \beta_{7} \exp_{i}^{3} + \beta_{8}ed_{i}^{4} + \beta_{9} \exp_{i}^{4} + u_{i}$$
(3)

 $E(\ln w_{i} | ed_{i}, exp_{i}) = \beta_{0} + \beta_{1}ed_{i} + \beta_{2}exp_{i} + \beta_{3}ed_{i}^{2} + \beta_{4}exp_{i}^{2} + \beta_{5}ed_{i}exp_{i} + \beta_{6}ed_{i}^{3} + \beta_{7}exp_{i}^{3} + \beta_{8}ed_{i}^{4} + \beta_{9}exp_{i}^{4} + \beta$

The observable variables in Model 3 are defined as follows:

 $\ln w_i$ = the natural logarithm of w_i , where is the average hourly wage rate of worker i in 1976;

- ed_i = the years of completed formal education for worker i;
- exp_i = the years of work experience accumulated by worker i.

- OLS estimation of Model 3 in *Stata*:
- . *
- * Model 3 for Females
- . ,
- . regress lnw ed exp edsq expsq edexp ed3rd exp3rd ed4th exp4th if female == 1

Source	SS	df	MS		Number of obs	= 252
+					F(9, 242)	= 12.38
Model	15.6135128	9 1.73	8483476		Prob > F	= 0.0000
Residual	33.9200943	242 .140	165679		R-squared	= 0.3152
+					Adj R-squared	= 0.2897
Total	49.5336071	251 .197	7345048		Root MSE	= .37439
lnw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
ed	0415939	.1858768	-0.22	0.823	4077367	.324549
exp	.1028106	.0321942	3.19	0.002	.039394	.1662271
edsq	.0052875	.0408062	0.13	0.897	0750932	.0856682
expsq	0076544	.0027291	-2.80	0.005	0130303	0022786
edexp	.0002434	.0009553	0.25	0.799	0016383	.002125
ed3rd	0003684	.0031869	-0.12	0.908	0066461	.0059093
exp3rd	.0002109	.000087	2.42	0.016	.0000395	.0003824
ed4th	.0000204	.000082	0.25	0.804	0001411	.0001819
exp4th	-1.96e-06	9.01e-07	-2.18	0.031	-3.73e-06	-1.85e-07
_cons	.9050268	.4626025	1.96	0.052	0062147	1.816268

Tests to determine the order of polynomial for *ed* in Model 3 for female employees

• <u>Test 1.1</u>: Determine whether a *third-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of ed_i .

Perform on the OLS SRE for Model 3 the following two-tail t-test or F-test:

 $H_0: β_8 = 0$ $H_1: β_8 ≠ 0$

Stata commands and results for Test 1.1:

```
. test ed4th
( 1) ed4th = 0
F( 1, 242) = 0.06
Prob > F = 0.8039
. lincom _b[ed4th]
( 1) ed4th = 0
Inw | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | .0000204 .000082 0.25 0.804 -.0001411 .0001819
```

Outcome and Implied Decision of Test 1.1:

• **p-value of F_0 and two-tail p-value of t_0 = 0.8039**

Since the p-value of the calculated F and t statistics for test 1.1 equals 0.8039, we can infer that a *third-order* **polynomial** may be adequate for representing the conditional effect on $\ln w_i$ of ed_i, and proceed to Test 1.2 below.

• <u>Test 1.2</u>: Determine whether a *second-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of ed_i.

Perform on the OLS SRE for Model 3 the following joint F-test:

H₀: $\beta_8 = 0$ and $\beta_6 = 0$ H₁: $\beta_8 \neq 0$ and/or $\beta_6 \neq 0$

Stata commands and results for Test 1.2:

```
. test ed4th ed3rd

( 1) ed4th = 0

( 2) ed3rd = 0

F( 2, 242) = 0.88

Prob > F = 0.4152

. return list

scalars:

r(drop) = 0

r(df_r) = 242

r(F) = .8821689268440828

r(df) = 2

r(p) = .4152109068470182
```

Outcome and Implied Decision of Test 1.2:

• **p-value of** $F_0 = 0.4152$

Since the p-value of the calculated F statistic for test 1.2 equals 0.4152, we can infer that a *second-order* **polynomial** may be adequate for representing the conditional effect on $\ln w_i$ of ed_i , and proceed to Test 1.3 below.

• <u>Test 1.3</u>: Determine whether a *first-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of ed_i.

Perform on the OLS SRE for Model 3 the following joint F-test:

$$\begin{split} H_0: \ \beta_8 &= 0 \ and \ \beta_6 &= 0 \ and \ \beta_3 &= 0 \\ H_1: \ \beta_8 &\neq 0 \ and/or \ \beta_6 &\neq 0 \ and/or \ \beta_3 &\neq 0 \end{split}$$

Stata commands and results for Test 1.3:

Outcome and Implied Decision of Test 1.3:

• **p-value of** $F_0 = 0.0012$

Since the p-value of the calculated F statistic for test 1.3 equals 0.0012, we **reject** the null hypothesis that a *first-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of ed_i.

Results of Tests 1.1, 1.2 and 1.3

A second-order polynomial may be adequate for representing the conditional effect on $\ln w_i$ of ed_i.

In other words, the coefficient exclusion restrictions $\beta_8 = 0$ and $\beta_6 = 0$ may be imposed on Model 3 for female employees.

Tests to determine the order of polynomial for *exp* in Model 3 for female employees

• <u>Test 2.1</u>: Determine whether a *third-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of exp_i.

Perform on the OLS SRE for Model 3 the following two-tail t-test or F-test:

 $H_0: \beta_9 = 0$ $H_1: \beta_9 \neq 0$

Stata commands and results for Test 2.1:

```
. lincom _b[exp4th]
(1) \exp 4th = 0
 _____
     (1) | -1.96e-06 9.01e-07 -2.18 0.031 -3.73e-06 -1.85e-07
. return list
scalars:
          r(df) = 242
          r(se) = 9.00524794364e-07
      r(estimate) = -1.95919651081e-06
. display r(estimate)/r(se)
-2.1756164
. display 2*ttail(r(df), abs(r(estimate)/r(se)))
.03055214
```

Outcome and Implied Decision of Test 2.1:

• **p-value of** \mathbf{F}_0 and **two-tail p-value of** $\mathbf{t}_0 = \mathbf{0.03055}$

Since the p-value of the calculated F and t statistics for test 2.1 equals 0.03055, we **reject** the null hypothesis that a *third-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of exp_i.

Results of Tests 2.1

A *fourth-order* polynomial is required to adequately represent the conditional effect on $\ln w_i$ of exp_i.

Results of Tests 1.1, 1.2 and 1.3

A *second-order* polynomial may be adequate for representing the conditional effect on $\ln w_i$ of ed_i.

In other words, the coefficient exclusion restrictions $\beta_8 = 0$ and $\beta_6 = 0$ may be imposed on Model 3 for female employees.

Final Step: Jointly Testing the Coefficient Restrictions

The results of these two sequences of hypothesis tests on the OLS estimates of Model 3 for female employees identify only two coefficient exclusion restrictions that might be imposed on the fourth-order polynomials in ed_i and exp_i for female employees.

These candidate exclusion restrictions should always be **jointly tested** before they are imposed on Model 3, the unrestricted model.

In this case, Test 1.2 of the coefficient exclusion restrictions $\beta_8 = 0$ and $\beta_6 = 0$ is the required joint test. But recall that the p-value of the calculated F statistic for test 1.2 equals **0.4152**. We can therefore infer from these two sequences of hypothesis tests that a *second-order* polynomial is adequate for representing the conditional effect on $\ln w_i$ of ed_i, but that a *fourth-order* polynomial is required to adequately represent the conditional effect on $\ln w_i$ of exp_i.

The Implied Restricted Model for Female Employees

Model 3 for female employees is given by the population regression equation

$$\ln w_{i} = \beta_{0} + \beta_{1}ed_{i} + \beta_{2} \exp_{i} + \beta_{3}ed_{i}^{2} + \beta_{4} \exp_{i}^{2} + \beta_{5}ed_{i} \exp_{i} + \beta_{6}ed_{i}^{3} + \beta_{7} \exp_{i}^{3} + \beta_{8}ed_{i}^{4} + \beta_{9} \exp_{i}^{4} + u_{i}$$
(3)

Imposition of the coefficient exclusion restrictions $\beta_8 = 0$ and $\beta_6 = 0$ on Model 3 gives the following *restricted* **regression model for** *female* **employees**:

$$\ln w_{i} = \beta_{0} + \beta_{1}ed_{i} + \beta_{2}exp_{i} + \beta_{3}ed_{i}^{2} + \beta_{4}exp_{i}^{2} + \beta_{5}ed_{i}exp_{i} + \beta_{7}exp_{i}^{3} + \beta_{9}exp_{i}^{4} + u_{i}$$
(3f)

• OLS estimation of Restricted Model 3f in *Stata*:

. regress lnw ed exp edsq expsq edexp exp3rd exp4th if female == 1

Source	SS	df	MS		Number of obs $F(7, 244)$	
Model Residual	15.3662132 34.1673939		517332 030303		F(7, 244) Prob > F R-squared Adj R-squared	= 0.0000 = 0.3102
Total	49.5336071	251 .197	345048		Root MSE	= .37421
lnw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ed	1052975	.0588168	-1.79	0.075	221151	.0105561
exp	.0993418	.032072	3.10	0.002	.0361686	.162515
edsq	.0078393	.0020448	3.83	0.000	.0038115	.0118671
expsq	0074103	.002714	-2.73	0.007	0127561	0020645
edexp	.0003417	.0009348	0.37	0.715	0014997	.0021831
exp3rd	.0002016	.0000865	2.33	0.021	.0000313	.000372
exp4th	-1.85e-06	8.94e-07	-2.07	0.040	-3.61e-06	-8.59e-08
_cons	1.10083	.4382619	2.51	0.013	.2375704	1.964089

$$E(\ln w_{i} | ed_{i}, exp_{i}) = \beta_{0} + \beta_{1}ed_{i} + \beta_{2}exp_{i} + \beta_{3}ed_{i}^{2} + \beta_{4}exp_{i}^{2} + \beta_{5}ed_{i}exp_{i} + \beta_{7}exp_{i}^{3} + \beta_{9}exp_{i}^{4}$$
(3f)

- The *conditional* effects on lnw_i of ed_i and exp_i in Model 3f for females:
 - 1. The conditional effect of *ed* in Model 3f is the partial, or *ceteris paribus*, relationship between **ed** and the conditional mean value of ln w for any given value of the other explanatory variable exp.

Set $exp_i = 13$ = the sample median value of the explanatory variable *exp* for female employees. Then the corresponding **conditional effect of** *ed* in Model 3f is the following **quadratic function of** *ed*:

$$E(\ln w_i | ed_i, exp_i = 13) = \beta_0 + \beta_1 ed_i + \beta_2 13 + \beta_3 ed_i^2 + \beta_4 13^2 + \beta_5 ed_i 13 + \beta_7 13^3 + \beta_9 13^4$$
$$= (\beta_0 + \beta_2 13 + \beta_4 13^2 + \beta_7 13^3 + \beta_9 13^4) + (\beta_1 + \beta_5 13) ed_i + \beta_3 ed_i^2$$

2. The conditional effect of *exp* in Model 3f is the partial, or *ceteris paribus*, relationship between **exp** and the conditional mean value of ln w for any given value of the other explanatory variable ed.

Set $ed_i = 12 =$ the sample median value of the explanatory variable *ed* for female employees. Then the corresponding **conditional effect of** *exp* in Model 3f is the following **quartic function of** *exp*:

$$E(\ln w_{i} | ed_{i} = 12, exp_{i}) = \beta_{0} + \beta_{1}12 + \beta_{2} exp_{i} + \beta_{3}12^{2} + \beta_{4} exp_{i}^{2} + \beta_{5}12 exp_{i} + \beta_{7} exp_{i}^{3} + \beta_{9} exp_{i}^{4}$$
$$= (\beta_{0} + \beta_{1}12 + \beta_{3}12^{2}) + (\beta_{2} + \beta_{5}12) exp_{i} + \beta_{4} exp_{i}^{2} + \beta_{7} exp_{i}^{3} + \beta_{9} exp_{i}^{4}$$

ECON 452* -- Note 3: Marginal Effects: Constant or Variable?

• Conditional effect on $\ln w_i$ of ed_i for $exp_i = 13$ in Model 3f for females:

$$E(\ln w_i | ed_i, exp_i = 13) = (\beta_0 + \beta_2 13 + \beta_4 13^2 + \beta_7 13^3 + \beta_9 13^4) + (\beta_1 + \beta_5 13)ed_i + \beta_3 ed_i^2$$

• Conditional effect on $\ln w_i$ of exp_i for $ed_i = 12$ in Model 3f for females:

$$E(\ln w_i | ed_i = 12, exp_i) = (\beta_0 + \beta_1 12 + \beta_3 12^2) + (\beta_2 + \beta_5 12) exp_i + \beta_4 exp_i^2 + \beta_7 exp_i^3 + \beta_9 exp_i^4$$

