ECON 452* -- NOTE 2

Specification Errors in the Selection of Regressors

1. Two Alternative Models

Two Alternative Linear Regression Models for the Dependent Variable Y

Model 1

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i} \qquad E(u_{i}|X_{i1}, X_{i2}) = 0$$
(1)

OLS estimation of equation (1) yields the OLS sample regression equation

$$\mathbf{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{X}_{i1} + \hat{\beta}_{2} \mathbf{X}_{i2} + \hat{\mathbf{u}}_{i}.$$
(1*)

Model 2

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + u_{i}.$$
 (2)

OLS estimation of equation (2) yields the OLS sample regression equation

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\beta}}_{0} + \widetilde{\boldsymbol{\beta}}_{1} \mathbf{X}_{i1} + \widetilde{\mathbf{u}}_{i} \,. \tag{2*}$$

Fact: In practice, we don't know the true model that actually generated the sample data.

Two General Types of Specification Errors in Selecting Regressors

- 1. Exclusion of a Relevant Regressor
- The *true* model is Model 1

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

• The *estimated* model is Model 2, which incorrectly excludes from the population regression function the regressor X_{i2}.

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{i1} + \mathbf{u}_{i} \,. \tag{2}$$

The OLS SRE for Model 2 is:

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\beta}}_{0} + \widetilde{\boldsymbol{\beta}}_{1} \mathbf{X}_{i1} + \widetilde{\mathbf{u}}_{i} \,. \tag{2*}$$

• *Question:* What are the statistical properties of the OLS slope coefficient estimator $\tilde{\beta}_1$ in the misspecified model (2)?

Two General Types of Specification Errors in Selecting Regressors (continued)

- 2. Inclusion of an Irrelevant Regressor
- The *true* model is Model 2

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{i1} + \mathbf{u}_{i} \,. \tag{2}$$

• The *estimated* model is Model 1, which incorrectly includes in the population regression function the regressor X_{i2}.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

The OLS SRE for model (1) is:

$$\mathbf{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{X}_{i1} + \hat{\beta}_{2} \mathbf{X}_{i2} + \hat{\mathbf{u}}_{i}.$$
(1*)

• *Question:* What are the statistical properties of the OLS slope coefficient estimators $\hat{\beta}_1$ and $\hat{\beta}_2$ in the misspecified model (1)?

2. Exclusion of a Relevant Regressor

• The *true* model is Model 1 given by PRE (1)

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

• The *estimated* model is Model 2 given by PRE (2), which incorrectly excludes from the population regression function the regressor X_{i2}.

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + u_{i}.$$
(2)

The OLS SRE for model (2) is:

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\beta}}_{0} + \widetilde{\boldsymbol{\beta}}_{1} \mathbf{X}_{i1} + \widetilde{\mathbf{u}}_{i} \,. \tag{2*}$$

The OLS SRE for model (2) is:

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\beta}}_{0} + \widetilde{\boldsymbol{\beta}}_{1} \mathbf{X}_{i1} + \widetilde{\boldsymbol{u}}_{i} \,. \tag{2*}$$

• Formulas

$$\widetilde{\beta}_{1} = \frac{\sum_{i=1}^{N} x_{i1} y_{i}}{\sum_{i=1}^{N} x_{i1}^{2}} = \frac{\sum_{i=1}^{N} x_{i1} Y_{i}}{\sum_{i=1}^{N} x_{i1}^{2}} = \frac{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1}) Y_{i}}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}} = \sum_{i=1}^{N} k_{i1} Y_{i}$$

$$\operatorname{Var}(\widetilde{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} x_{i1}^{2}} = \frac{\sigma^{2}}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}} = \frac{\sigma^{2}}{\operatorname{TSS}_{1}}$$

where

$$\begin{aligned} \mathbf{x}_{i1} &= \mathbf{X}_{i1} - \overline{\mathbf{X}}_{1}; \qquad \mathbf{y}_{i} = \mathbf{Y}_{i} - \overline{\mathbf{Y}}; \qquad \mathbf{k}_{i1} = \frac{\mathbf{x}_{i1}}{\sum_{i=1}^{N} \mathbf{x}_{i1}^{2}} = \frac{\mathbf{X}_{i1} - \overline{\mathbf{X}}_{1}}{\sum_{i=1}^{N} (\mathbf{X}_{i1} - \overline{\mathbf{X}}_{1})^{2}}; \\ \mathbf{TSS}_{1} &= \sum_{i=1}^{N} \mathbf{x}_{i1}^{2} = \sum_{i=1}^{N} (\mathbf{X}_{i1} - \overline{\mathbf{X}}_{1})^{2}. \end{aligned}$$

• *Question:* What are the statistical properties of the OLS slope coefficient estimator $\tilde{\beta}_1$ in model (2) when model (1) is the true model?

... Page 5 of 31 pages

 $\square \underline{Result 1}: \tilde{\beta}_1 \text{ in model (2) is in general a$ *biased*(and*inconsistent* $) estimator of <math>\beta_1$ when model (1) is the *true* model.

$$\begin{split} E(\widetilde{\beta}_{1}) \neq \beta_{1} & \text{when } X_{i1} \text{ and } X_{i2} \text{ are correlated} \\ Bias(\widetilde{\beta}_{1}) = E(\widetilde{\beta}_{1}) - \beta_{1} \neq 0 & \text{when } X_{i1} \text{ and } X_{i2} \text{ are correlated} \end{split}$$

Proof: Consists of deriving the expression for $E(\tilde{\beta}_1)$ when model (1) is the true model.

1. Substitute for Y_i in the formula for $\tilde{\beta}_i$ the regression equation for model (1).

Substitute $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i$ into $\tilde{\beta}_1 = \sum_{i=1}^N k_{i1} Y_i$.

$$\begin{split} \widetilde{\beta}_{1} &= \sum_{i=1}^{N} k_{i1} Y_{i} \\ &= \sum_{i=1}^{N} k_{i1} (\beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + u_{i}) \\ &= \sum_{i=1}^{N} (\beta_{0} k_{i1} + \beta_{1} k_{i1} X_{i1} + \beta_{2} k_{i1} X_{i2} + k_{i1} u_{i}) \\ &= \beta_{0} \sum_{i=1}^{N} k_{i1} + \beta_{1} \sum_{i=1}^{N} k_{i1} X_{i1} + \beta_{2} \sum_{i=1}^{N} k_{i1} X_{i2} + \sum_{i=1}^{N} k_{i1} u_{i} \\ &= \beta_{1} + \beta_{2} \sum_{i=1}^{N} k_{i1} X_{i2} + \sum_{i=1}^{N} k_{i1} u_{i} \end{split}$$

$$\widetilde{\beta}_1 \ = \ \beta_1 + \ \beta_2 \sum_{i=1}^N k_{i1} X_{i2} + \ \sum_{i=1}^N k_{i1} u_i$$

Note: We have used the computational properties $\sum_{i=1}^{N} k_{i1} = 0$ and $\sum_{i=1}^{N} k_{i1} X_{i1} = 1$.

2. Now take the expectation of $\tilde{\beta}_1$ conditional on X_{i1} and X_{i2} , $E(\tilde{\beta}_1 | X_{i1}, X_{i2})$, using the zero conditional mean error assumption $E(u_i | X_{i1}, X_{i2}) = 0$.

$$E(\tilde{\beta}_{1} | X_{i1}, X_{i2}) = \beta_{1} + \beta_{2} \sum_{i=1}^{N} k_{i1} X_{i2} + \sum_{i=1}^{N} k_{i1} E(u_{i} | X_{i1}, X_{i2})$$
$$= \beta_{1} + \beta_{2} \sum_{i=1}^{N} k_{i1} X_{i2}$$

Interpretation of the expression for $E(\tilde{\beta}_1)$:

$$\mathbf{E}(\widetilde{\boldsymbol{\beta}}_1) = \boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \sum_{i=1}^N \mathbf{k}_{i1} \mathbf{X}_{i2} \,.$$

• Suppose we estimate by OLS the auxiliary linear regression equation

$$X_{i2} = \,\beta_{20} + \,\beta_{21} X_{i1} + \,v_i\,.$$

• The OLS sample regression equation corresponding to this auxiliary regression equation is:

$$X_{i2} = \hat{\beta}_{20} + \hat{\beta}_{21} X_{i1} + \hat{v}_i \,. \label{eq:Xi2}$$

• The OLS coefficient estimate $\hat{\beta}_{21}$ is given by the formula

$$\hat{\beta}_{21} = \frac{\sum_{i=1}^{N} x_{i1} x_{i2}}{\sum_{i=1}^{N} x_{i1}^{2}} = \sum_{i=1}^{N} k_{i1} x_{i2} = \frac{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(X_{i2} - \overline{X}_{2})}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}}$$

where
$$x_{i2} = X_{i2} - \overline{X}_2$$
 and $k_{i1} = \frac{x_{i1}}{\sum_{i=1}^{N} x_{i1}^2} = \frac{X_{i1} - \overline{X}_1}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_1)^2}$

• But $x_{i2} = X_{i2} - \overline{X}_2$ and $\sum_{i=1}^{N} k_{i1} = 0$, so that this formula for $\hat{\beta}_{21}$ can be written as

$$\hat{\beta}_{21} = \sum_{i=1}^{N} k_{i1} x_{i2} = \sum_{i=1}^{N} k_{i1} (X_{i2} - \overline{X}_2) = \sum_{i=1}^{N} k_{i1} X_{i2} - \overline{X}_2 \sum_{i=1}^{N} k_{i1} = \sum_{i=1}^{N} k_{i1} X_{i2}.$$

 \square *<u>Result</u>: The expression for E(\tilde{\beta}_1) can be written as*

$$E(\tilde{\beta}_{1}) = \beta_{1} + \beta_{2} \sum_{i=1}^{N} k_{i1} X_{i2} = \beta_{1} + \beta_{2} \hat{\beta}_{21} \qquad \text{since} \qquad \hat{\beta}_{21} = \sum_{i=1}^{N} k_{i1} X_{i2}.$$

Omitted Variables Bias

• The omitted variables bias of the OLS estimator $\tilde{\beta}_1$ in model (2) is:

 $\operatorname{Bias}(\widetilde{\beta}_1) = \operatorname{E}(\widetilde{\beta}_1) - \beta_1 = \beta_2 \, \hat{\beta}_{21}.$

• The OLS estimator $\tilde{\beta}_1$ in model (2) is a *biased* estimator of the slope coefficient β_1 if the sample values of X_1 and X_2 are *correlated*.

$$\begin{split} E(\widetilde{\beta}_{1}) &= \beta_{1} + \beta_{2} \hat{\beta}_{21} \neq \beta_{1} \quad \text{if} \quad \hat{\beta}_{21} = \sum_{i=1}^{N} k_{i1} x_{i2} = \frac{\sum_{i=1}^{N} x_{i1} x_{i2}}{\sum_{i=1}^{N} x_{i1}^{2}} \neq 0 \\ \text{if} \quad \sum_{i=1}^{N} x_{i1} x_{i2} = \sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(X_{i2} - \overline{X}_{2}) \neq 0 \end{split}$$

- if sample values of X_1 and X_2 have nonzero covariance.
- if sample values of X_1 and X_2 are *correlated*.

• Only if the sample values of X_1 and X_2 are *uncorrelated* is the OLS estimator $\tilde{\beta}_1$ in model (2) an *unbiased* estimator of the slope coefficient β_1 .

$$E(\tilde{\beta}_1) = \beta_1 + \beta_2 \hat{\beta}_{21} = \beta_1$$
 only if $\hat{\beta}_{21} = 0$

only if
$$\sum_{i=1}^{N} x_{i1} x_{i2} = \sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(X_{i2} - \overline{X}_{2}) = 0$$

- only if sample values of X_1 and X_2 have zero covariance.
- only if sample values of X_1 and X_2 are *uncorrelated*.

Note:

The sample *covariance* of X_1 and X_2 is:

$$\hat{Cov}(X_1, X_2) = \frac{\sum_{i=1}^{N} x_{i1} x_{i2}}{N-1} = \frac{\sum_{i=1}^{N} (X_{i1} - \overline{X}_1)(X_{i2} - \overline{X}_2)}{N-1}.$$

The sample correlation coefficient of X_1 and X_2 is:

$$C\hat{o}rr(X_1, X_2) = \frac{\sum_{i=1}^{N} x_{i1} x_{i2}}{\sqrt{\sum_{i=1}^{N} x_{i1}^2} \sqrt{\sum_{i=1}^{N} x_{i2}^2}} = \frac{\sum_{i=1}^{N} (X_{i1} - \overline{X}_1)(X_{i2} - \overline{X}_2)}{\sqrt{\sum_{i=1}^{N} (X_{i1} - \overline{X}_1)^2} \sqrt{\sum_{i=1}^{N} (X_{i2} - \overline{X}_2)^2}}.$$

Both the sample *covariance* of X_1 and X_2 and the sample *correlation* of X_1 and X_2 are *zero* if and only if

$$\sum_{i=1}^{N} x_{i1} x_{i2} = \sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})(X_{i2} - \overline{X}_{2}) = 0$$

... Page 11 of 31 pages

• <u>Direction of Bias</u>: The direction (sign) of the omitted variables bias of the OLS estimator $\tilde{\beta}_1$ in model (2) is determined by the sign of the product $\beta_2 \hat{\beta}_{21}$ in the following expression for $\text{Bias}(\tilde{\beta}_1)$:

 $\operatorname{Bias}(\widetilde{\beta}_1) = \operatorname{E}(\widetilde{\beta}_1) - \beta_1 = \beta_2 \, \hat{\beta}_{21}.$

- 1. If β_2 and $\hat{\beta}_{21}$ have the *same* sign, then their product is positive and $\tilde{\beta}_1$ is an *upward biased* estimator of β_1 : Bias $(\tilde{\beta}_1) = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \hat{\beta}_{21} > 0$.
- 2. If β_2 and $\hat{\beta}_{21}$ have *different* signs, then their product is negative and $\tilde{\beta}_1$ is a *downward biased* estimator of β_1 :

$$\operatorname{Bias}(\widetilde{\beta}_1) = \operatorname{E}(\widetilde{\beta}_1) - \beta_1 = \beta_2 \,\widehat{\beta}_{21} < 0.$$

Omitted Variables Bias -- Generalization:

• The *true* model is Model 1 as given by the population regression equation

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{k-1}X_{ik-1} + \beta_{k}X_{ik} + u_{i}$$
(1)

• The *estimated* model is Model 2, which incorrectly excludes from the population regression function the k-th regressor X_{ik}.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{k-1}X_{ik-1} + u_{i}$$
(2)

The OLS SRE for Model 2, the misspecified model, is:

$$\mathbf{Y}_{i} = \widetilde{\boldsymbol{\beta}}_{0} + \widetilde{\boldsymbol{\beta}}_{1} \mathbf{X}_{i1} + \widetilde{\boldsymbol{\beta}}_{2} \mathbf{X}_{i2} + \dots + \widetilde{\boldsymbol{\beta}}_{k-1} \mathbf{X}_{ik-1} + \widetilde{\boldsymbol{u}}_{i}$$
(2)

• *Question:* What are the statistical properties of the OLS slope coefficient estimators $\tilde{\beta}_j$ (j = 1, 2, ..., k-1) in the misspecified model (2)?

Omitted Variables Bias – General Result:

• The expression for $E(\tilde{\beta}_j | X)$, the conditional expectation of $\tilde{\beta}_j$ for any given regressor matrix X, can be shown to be

$$E(\tilde{\beta}_{j}|X) = \beta_{j} + \beta_{k} \hat{\beta}_{kj} \qquad \text{(for } j = 1, 2, ..., k-1\text{)}$$

where $\hat{\beta}_{kj}$ is OLS slope coefficient estimate in the following **auxiliary OLS regression** of the omitted regressor X_{ik} on all the included regressors X_{ij} (j = 1, 2, ..., k-1) and an intercept constant:

$$X_{ik} = \hat{\beta}_{k0} + \hat{\beta}_{k1}X_{i1} + \dots + \hat{\beta}_{kj}X_{ij} + \dots + \hat{\beta}_{k,k-1}X_{ik-1} + \hat{v}_{ik}$$
(3)

- If the *included* regressor X_{ij} is partially *correlated* with the *omitted* regressor X_{ik} i.e., if $\hat{\beta}_{kj} \neq 0$ in the auxiliary OLS regression equation (3) then the OLS slope coefficient estimator $\tilde{\beta}_j$ of X_{ij} in the misspecified model (2) is a **biased** (and inconsistent) estimator of the slope coefficient β_j in the true population regression equation (1).
- Only if the *included* regressor X_{ij} is partially *uncorrelated* with the *omitted* regressor X_{ik} i.e., if $\hat{\beta}_{kj} = 0$ in the auxiliary OLS regression equation (3) will the OLS slope coefficient estimator $\tilde{\beta}_j$ of X_{ij} in the misspecified model (2) be an **unbiased** (and consistent) estimator of the slope coefficient β_j in the true population regression equation (1).

- $\square \underline{Result 2}: \text{ The variance of } \hat{\beta}_1 \text{ in model (2) is less than (or equal to) the variance of } \hat{\beta}_1 \text{ in model (1),} \\ \text{regardless of whether model (1) or model (2) is the true model: i.e., } Var(\tilde{\beta}_1) \leq Var(\hat{\beta}_1).$
- The variance of $\tilde{\beta}_1$ in model (2) is given by the formula

$$Var(\widetilde{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} x_{i1}^{2}} = \frac{\sigma^{2}}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}} = \frac{\sigma^{2}}{TSS_{1}}$$

where:

$$\sigma^2 = Var(u_i) = the constant variance of the error terms u_i;$$

 $TSS_1 = \sum_{i=1}^{N} (X_{i1} - \overline{X}_1)^2 = \sum_{i=1}^{N} x_{i1}^2 = total sum-of-squares for X_1.$

• The variance of $\hat{\beta}_1$ in model (1) is given by the formula

$$\operatorname{Var}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{N} x_{i1}^{2} (1 - R_{1}^{2})} = \frac{\sigma^{2}}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2} (1 - R_{1}^{2})} = \frac{\sigma^{2}}{\operatorname{TSS}_{1} (1 - R_{1}^{2})}$$

where:

$$\begin{split} R_1^2 &= \text{ the } R^2 \text{ from OLS regression of } X_1 \text{ on } X_2 \text{ and an intercept constant} \\ &= \text{ the } R^2 \text{ from OLS estimation of } X_{i1} = \beta_{10} + \beta_{12} X_{i2} + \epsilon_i \\ &= \text{ the } R^2 \text{ from the OLS SRE } X_{i1} = \hat{\beta}_{10} + \hat{\beta}_{12} X_{i2} + \hat{\epsilon}_i. \end{split}$$

• **Compare** $Var(\tilde{\beta}_1)$ and $Var(\hat{\beta}_1)$:

$$\operatorname{Var}(\widetilde{\beta}_1) = \frac{\sigma^2}{\operatorname{TSS}_1}$$
 and $\operatorname{Var}(\widehat{\beta}_1) = \frac{\sigma^2}{\operatorname{TSS}_1(1-\operatorname{R}_1^2)}$.

Since $0 \le R_1^2 < 1$ implies that $0 < 1 - R_1^2 \le 1$, and $TSS_1 > 0$, it follows that

$$TSS_{1}(1-R_{1}^{2}) \leq TSS_{1} \implies \frac{1}{TSS_{1}(1-R_{1}^{2})} \geq \frac{1}{TSS_{1}}$$
$$\implies \frac{\sigma^{2}}{TSS_{1}(1-R_{1}^{2})} \geq \frac{\sigma^{2}}{TSS_{1}} \quad \text{since } \sigma^{2} > 0$$
$$\implies Var(\hat{\beta}_{1}) \geq Var(\tilde{\beta}_{1})$$

 $\square \underline{Result 2}: \text{ The variance of the OLS estimator } \hat{\beta}_1 \text{ in model (1) is greater than or equal to the variance of the OLS estimator } \tilde{\beta}_1 \text{ in model (2):}$

 $\operatorname{Var}(\hat{\beta}_1) \geq \operatorname{Var}(\widetilde{\beta}_1)$

where:

$$\operatorname{Var}(\widetilde{\beta}_1) = \frac{\sigma^2}{\operatorname{TSS}_1}$$
 and $\operatorname{Var}(\widehat{\beta}_1) = \frac{\sigma^2}{\operatorname{TSS}_1(1-\operatorname{R}_1^2)}$.

Special Case: $Var(\hat{\beta}_1) = Var(\tilde{\beta}_1)$ if and only if R_1^2 , the R^2 from OLS regression of X_1 on X_2 and an intercept constant, equals zero -- i.e., if and only if the included regressor X_1 is uncorrelated in the sample with the excluded regressor X_2 :

$$R_1^2 = 0 \qquad \Rightarrow \qquad \operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\operatorname{TSS}_1(1 - R_1^2)} = \frac{\sigma^2}{\operatorname{TSS}_1} = \operatorname{Var}(\tilde{\beta}_1).$$

Otherwise, $Var(\hat{\beta}_1) > Var(\tilde{\beta}_1)$:

 $0 < R_1^2 < 1 \implies Var(\hat{\beta}_1) > Var(\tilde{\beta}_1).$

ECON 452* -- Note 2: Selection of Regressors

... Page 18 of 31 pages

- $\square \underline{Result 3}: \text{ The estimator of the error variance from OLS estimation of model (2) is a$ *biased*(and*inconsistent* $) estimator of the error variance <math>\sigma^2$ in the true model, model (1).
- The OLS estimator of the error variance σ^2 from model (2) is given by the usual formula:

$$\tilde{\sigma}^{2} = \frac{RSS_{(2)}}{N-2} = \frac{\sum_{i=1}^{N} \tilde{u}_{i}^{2}}{N-2} = \frac{\sum_{i=1}^{N} (Y_{i} - \tilde{\beta}_{0} - \tilde{\beta}_{1}X_{i1})^{2}}{N-2}$$

where

$$RSS_{(2)} = \sum_{i=1}^{N} \tilde{u}_{i}^{2} = \sum_{i=1}^{N} (Y_{i} - \tilde{\beta}_{0} - \tilde{\beta}_{1}X_{i1})^{2}$$

= the residual sum-of-squares from OLS estimation of model (2)

• <u>Direction of Bias</u>: More specifically, it can be shown that the error variance estimator $\tilde{\sigma}^2$ from model (2) is an *upward biased* estimator of the true error variance σ^2 .

 $E(\tilde{\sigma}^2) > \sigma^2$

Moreover, this upward bias of $\tilde{\sigma}^2$ does not vanish even in the special case when X₁ and X₂ are uncorrelated.

- <u>Result 4</u>: The OLS estimators of the variances of the coefficient estimates from misspecified model (2) are biased (and inconsistent).
- The OLS estimator of the variance of $\tilde{\beta}_1$ from model (2) is given by the usual formula:

$$V\hat{a}r(\widetilde{\beta}_{1}) = \frac{\widetilde{\sigma}^{2}}{TSS_{1}} = \frac{\widetilde{\sigma}^{2}}{\sum_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}}$$

where $\widetilde{\sigma}^{2} = \frac{\sum_{i=1}^{N} \widetilde{u}_{i}^{2}}{N-2} = \frac{\sum_{i=1}^{N} (Y_{i} - \widetilde{\beta}_{0} - \widetilde{\beta}_{1}X_{i1})^{2}}{N-2}.$

W

- But $V\hat{a}r(\hat{\beta}_1)$ is a biased and inconsistent estimator of $Var(\hat{\beta}_1)$ in the true model, model (1), for two reasons.
 - 1. Vâr($\tilde{\beta}_1$) uses an incorrect formula for Var($\hat{\beta}_1$).

The correct formula for $Var(\hat{\beta}_1)$ is: $Var(\hat{\beta}_1) = \frac{\sigma^2}{TSS_1(1-R_1^2)}$.

But $V\hat{a}r(\tilde{\beta}_1)$ uses the formula: $Var(\tilde{\beta}_1) = \frac{\sigma^2}{TSS_1}$.

2. Vâr($\tilde{\beta}_1$) uses the upward biased estimator $\tilde{\sigma}^2$ of the error variance σ^2 .

So even if the formula for $V\hat{a}r(\tilde{\beta}_1)$ was correct, it would still be a biased and inconsistent estimator of the variance of the OLS estimator of β_1 .

 $\square \underline{Result 5}:$ The usual procedures for statistical inference -- hypothesis testing and confidence interval estimation -- based on OLS estimation of the misspecified model, model (2), are in general *invalid*. They are likely to lead to incorrect and misleading inferences respecting the statistical significance of the OLS coefficient estimates $\tilde{\beta}_0$ and $\tilde{\beta}_1$ in model (2).

3. Inclusion of an Irrelevant Regressor

• The *true* model is Model 2 given by PRE (2):

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + u_{i}.$$
 (2)

• The *estimated* model is Model 1 given by PRE (1), which incorrectly includes in the population regression function the regressor X_{i2} .

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i}$$
(1)

The OLS SRE for model (1) is:

$$\mathbf{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{X}_{i1} + \hat{\beta}_{2} \mathbf{X}_{i2} + \hat{\mathbf{u}}_{i}.$$
(1*)

• Formulas for OLS Coefficient Estimators in Model (1)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} x_{i2}^{2} \sum_{i=1}^{N} x_{i1} y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i2} y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}} = \frac{\sum_{i=1}^{N} x_{i2}^{2} \sum_{i=1}^{N} x_{i1} Y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i2} Y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}}$$

$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2} y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i1} y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}} = \frac{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2} Y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i1} Y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}}$$

where:

$$\begin{split} y_{i} &= Y_{i} - \overline{Y} \,; \qquad x_{i1} = X_{i1} - \overline{X}_{1} \,; \qquad x_{i2} = X_{i2} - \overline{X}_{2} \,; \\ \sum_{i=1}^{N} x_{i1} y_{i} &= \sum_{i=1}^{N} x_{i1} (Y_{i} - \overline{Y}) \,= \, \sum_{i=1}^{N} x_{i1} Y_{i} \,- \, \overline{Y} \sum_{i=1}^{N} x_{i1} \,= \, \sum_{i=1}^{N} x_{i1} Y_{i} \,\, b/c \,\, \sum_{i=1}^{N} x_{i1} \,= \, 0 \\ \sum_{i=1}^{N} x_{i2} y_{i} &= \, \sum_{i=1}^{N} x_{i2} (Y_{i} - \overline{Y}) \,= \, \sum_{i=1}^{N} x_{i2} Y_{i} \,\, - \, \overline{Y} \sum_{i=1}^{N} x_{i2} \,= \, \sum_{i=1}^{N} x_{i2} Y_{i} \,\, b/c \,\, \sum_{i=1}^{N} x_{i2} \,= \, 0 \end{split}$$

• *Question:* What are the statistical properties of the OLS slope coefficient estimators $\hat{\beta}_1$ and $\hat{\beta}_2$ in the misspecified model (1)?

The OLS SRE for model (1) is:

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i1} + \hat{\beta}_{2}X_{i2} + \hat{u}_{i}.$$
(1*)

 $\square \underline{Result 1}: \text{ Under the zero mean error assumption A2, which implies that } E(u_i) = 0, \text{ it can be shown that } \hat{\beta}_1 \text{ is an unbiased (and consistent) estimator of the slope coefficient } \beta_1.$

 $E(\hat{\beta}_1) = \beta_1 \implies Bias(\hat{\beta}_1) = E(\hat{\beta}_1) - \beta_1 = \beta_1 - \beta_1 = 0.$

 $\square \underline{Result 2}: \text{ Under the zero mean error assumption A2, which implies that } E(u_i) = 0, \text{ it can be shown that } \hat{\beta}_2 \text{ is an unbiased (and consistent) estimator of } \beta_2 = 0, \text{ where } 0 \text{ is the true value of } \beta_2 \text{ in true model (2).}$

$$\mathbf{E}(\hat{\beta}_2) = \mathbf{0} = \beta_2 \qquad \Rightarrow \qquad \operatorname{Bias}(\hat{\beta}_2) = \mathbf{E}(\hat{\beta}_2) - \beta_2 = \mathbf{0} - \mathbf{0} = \mathbf{0}.$$

- $\square \underline{Result 3}: \text{ The OLS estimator of the error variance from model (1) is an unbiased (and consistent) estimator of the error variance <math>\sigma^2$ in the true model, model (2).
- The OLS estimator of the error variance σ^2 from model (1), denoted as $\hat{\sigma}^2$, is given by the usual formula:

$$\hat{\sigma}^{2} = \frac{RSS_{(1)}}{N-3} = \frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{N-3} = \frac{\sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i1} - \hat{\beta}_{2}X_{i2})^{2}}{N-3}$$

where

$$RSS_{(1)} = \sum_{i=1}^{N} \hat{u}_{i}^{2} = \sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i1} - \hat{\beta}_{2}X_{i2})^{2}$$

= the residual sum-of-squares from OLS estimation of model (1)

□ <u>*Result 4*</u>: The OLS estimators of the *variances* of the *coefficient estimates* from model (1) are *unbiased* (and *consistent*).

• The OLS estimators of the variances of $\hat{\beta}_1$ and $\hat{\beta}_2$ from model (1) are given by the usual formulas:

$$V\hat{a}r(\hat{\beta}_1) = \frac{\hat{\sigma}^2}{TSS_1(1-R_1^2)} \quad \text{and} \quad V\hat{a}r(\hat{\beta}_2) = \frac{\hat{\sigma}^2}{TSS_2(1-R_2^2)}$$

where:

 $\hat{\sigma}^2$ = the OLS estimator of the error variance from model (1)

$$TSS_1 = \sum_{i=1}^{N} (X_{i1} - \overline{X}_1)^2 = \sum_{i=1}^{N} x_{i1}^2 = \text{ total sum-of-squares for } X_1$$

 \mathbf{R}_1^2 = the \mathbf{R}^2 from OLS regression of \mathbf{X}_1 on \mathbf{X}_2 and an intercept constant

= the R² from OLS estimation of
$$X_{i1} = \beta_{10} + \beta_{12}X_{i2} + \varepsilon_i$$

= the R² from the OLS SRE
$$X_{i1} = \hat{\beta}_{10} + \hat{\beta}_{12}X_{i2} + \hat{\epsilon}_i$$
.

$$TSS_2 = \sum_{i=1}^{N} (X_{i2} - \overline{X}_2)^2 = \sum_{i=1}^{N} x_{i2}^2 = \text{ total sum-of-squares for } X_2$$

 R_2^2 = the R^2 from OLS regression of X_2 on X_1 and an intercept constant = the R^2 from OLS estimation of $X_{i2} = \beta_{20} + \beta_{21}X_{i1} + v_i$ = the R^2 from the OLS SRE $X_{i2} = \hat{\beta}_{20} + \hat{\beta}_{21}X_{i1} + \hat{v}_i$.

- □ <u>*Result 5:*</u> The usual **procedures for statistical inference** -- hypothesis testing and confidence interval estimation -- **remain** *valid*.
- □ <u>*Result 6*</u>: The variances of the OLS coefficient estimators in Model (1) are generally larger than the variances of the corresponding OLS coefficient estimators in the true model, Model (2).
- The variance of $\hat{\beta}_1$ from Model 1 is: $Var(\hat{\beta}_1) = \frac{\sigma^2}{TSS_1(1-R_1^2)}$.
- The *variance* of $\tilde{\beta}_1$ from Model 2 is: $Var(\tilde{\beta}_1) = \frac{\sigma^2}{TSS_1}$.
- As previously demonstrated, the variance of $\hat{\beta}_1$ from model (1) is generally *greater than* the variance of $\tilde{\beta}_1$ from model (2):

 $\operatorname{Var}(\hat{\beta}_1) \geq \operatorname{Var}(\widetilde{\beta}_1)$

- Implications:
 - $\hat{\beta}_1$ from model (1) is *inefficient* relative to $\tilde{\beta}_1$ from model (2).
 - $\hat{\beta}_1$ from model (1) is *less precise* than $\tilde{\beta}_1$ from model (2).

4. Choosing Between Model 1 and Model 2

In practice, one does not know whether Model 1 or Model 2 is the true model.

Model 1:
$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i$$
 (1)

Model 2:
$$Y_i = \beta_0 + \beta_1 X_{i1} + u_i$$
 (2)

Question: How do applied researchers choose between Model 1 and Model 2?

Answer: After estimating Model 1, perform a *two-tail* t-test or F-test of the one exclusion restriction $\beta_2 = 0$, which is the coefficient restriction that Model 2 imposes on Model 1.

• Null and Alternative Hypotheses

H ₀ :	$\beta_2 = 0$	\Rightarrow	Model 2 is the true model
------------------	---------------	---------------	---------------------------

H₁: $\beta_2 \neq 0 \implies$ Model 1 is the true model

A test of H_0 against H_1 is not only a test of Model 2 against Model 1, it is also a means of choosing between two alternative estimators of the slope coefficient β_1 .

• The two alternative OLS estimators of the coefficient β_1 are:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} x_{i2}^{2} \sum_{i=1}^{N} x_{i1} y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i2} y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}} = \frac{\sum_{i=1}^{N} x_{i2}^{2} \sum_{i=1}^{N} x_{i1} Y_{i} - \sum_{i=1}^{N} x_{i1} x_{i2} \sum_{i=1}^{N} x_{i2} Y_{i}}{\sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i1}^{2} \sum_{i=1}^{N} x_{i2}^{2} - (\sum_{i=1}^{N} x_{i1} x_{i2})^{2}}$$

= the OLS estimator of β_1 in Model 1

$$\widetilde{\beta}_{1} = \frac{\sum\limits_{i=1}^{N} x_{i1} y_{i}}{\sum\limits_{i=1}^{N} x_{i1}^{2}} = \frac{\sum\limits_{i=1}^{N} x_{i1} Y_{i}}{\sum\limits_{i=1}^{N} x_{i1}^{2}} = \frac{\sum\limits_{i=1}^{N} (X_{i1} - \overline{X}_{1}) Y_{i}}{\sum\limits_{i=1}^{N} (X_{i1} - \overline{X}_{1})^{2}}$$

= the OLS estimator of β_1 in Model 2

• Compare the statistical properties of the two alternative estimators of β_1 under the null hypothesis H₀ and under the alternative hypothesis H₁.

Under the null hypothesis H_0 -- if H_0 is true, meaning if $\beta_2 = 0$:

- Both $\tilde{\beta}_1$ and $\hat{\beta}_1$ are *unbiased* and *consistent* for β_1 .
- But $\tilde{\beta}_1$ is *efficient* relative to $\hat{\beta}_1$; $\tilde{\beta}_1$ has *smaller variance* than $\hat{\beta}_1$.

<u>Result</u>: $\tilde{\beta}_1$ is preferred to $\hat{\beta}_1$ if the null hypothesis $\beta_2 = 0$ is true.

Under the alternative hypothesis H_1 -- if H_1 is true, meaning if $\beta_2 \neq 0$:

- $\tilde{\beta}_1$ is *biased* and *inconsistent* for β_1 , but has smaller variance than $\hat{\beta}_1$.
- $\hat{\beta}_1$ is *unbiased* and *consistent* for β_1 , but has larger variance than $\tilde{\beta}_1$.

<u>Result</u>: $\hat{\beta}_1$ is preferred to $\tilde{\beta}_1$ if the alternative hypothesis $\beta_2 \neq 0$ is true.

• Choice Between Model 1 and Model 2

The choice between Model 1 and Model 2 depends on which of two possible test outcomes is obtained.

1. If the null hypothesis H_0 : $\beta_2 = 0$ is *retained*, choose *Model 2*.

Nonrejection of H_0 : $\beta_2 = 0$ constitutes sample evidence that Model 2 is the true model.

If Model 2 is the true model, both $\hat{\beta}_1$ and $\tilde{\beta}_1$ are unbiased and consistent for β_1 , but $\tilde{\beta}_1$ is efficient relative to $\hat{\beta}_1$.

2. If the null hypothesis H_0 : $\beta_2 = 0$ is *rejected*, choose *Model 1*.

Rejection of H₀: $\beta_2 = 0$ constitutes sample evidence that Model 2 is *not* the true model -- that Model 1 is the true model.

If Model 1 is the true model, $\hat{\beta}_1$ is unbiased and consistent for β_1 , whereas $\tilde{\beta}_1$ is biased and inconsistent for β_1 .