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ECON 452* -- Introduction to NOTES 13 and 14

Introduction to Binary Dependent VVariables Models

1. The Linear Probability Model

The linear probability model — or LPM — looks exactly like a standard linear regression model, except that the
regressand Y is a binary variable that takes only two discrete values, 0 and 1.

O The population regression equation (PRE) of the LPM is:

Y= x{B+u=Bg+BXy+BXiy+-+ B Xy +u (i=1,....,N) (1)
where
Y, = {0, 1}.
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Q Interpretation of the Regression Coefficients in the LPM

Question: How should the slope coefficients B; (j = 1, ..., k) be interpreted when Y; is a binary dependent
variable?

Answer:

Under the zero conditional mean error assumption — Assumption A2:

Elu|x])=0 (A2)
Implication of A2:

E(UI‘XIT) =0 = E(Yi‘XiT) = XiTB = Bo + B X + B X + -+ B Xk
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Key Point: When Y; is a binary dependent variable,

Pr( Y, =1]xT) = E(Y;| x[) = x7B 2)
1 Pr(Yi =1 ‘ X;F) = xiTB is called generically the response probability or probability of “success”.
2. Pr(Yi =1‘xiT) + Pr(Yi :O‘XiT) =1 forall XiT.
3. Pr(Yi =1‘X1T) + Pr(Yi = O‘X;r) = 1 implies that
Pr(Yi =O‘X1T) =1- Pr(Yi =1‘X;r)
-1 - E(v|x])
=1-x;P (3)
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Interpretation of Slope Coefficients B; in the Linear Probability Model
Let X; change by AX; ; hold values of all other regressors constant.
The resulting change in Pr(Yi =1 ‘ XIT) = x;PB is:

aPr(Y; =1]x]) = AE(Y,[xT) = B, AX ;.

Therefore,

aPe(Y, =1)x])
i = AX
AX,=0, ¥ g#]

J

the change in the probability that Y; = 1 associated with a one-unit increase in Xj, holding constant the
values of all other explanatory variables
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QO OLS Estimation of the LPM

e OLS estimation of the PRE Y; = xiTB + u; yields the OLS sample regression equation (OLS SRE):

Yi=xi+ 0=V +q 4)
where
Y, = XITB = the estimated or predicted value of Y;

=Y, -Y, =Y, - xlTﬁ = the OLS residual for the 1-th observation

1 1 1

B = (XTX)_IXTy = the OLS estimator of regression coefficient vector 3

« Properties of OLS estimator f

B is unbiased: EP) = B
B is consistent: plim(B) = B
B is inefficient: B is not the minimum variance estimator of B
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O Two Major Defects of OLS Estimation of BDV Models

o Defect 1: Predictions outside the unit interval [0, 1]

A ~

Y. = x{p is an estimator of Pr(Yi =1 ‘ XIT) = x/B

But it is nonetheless possible for the values of Y; = x| B to lie outside the unit interval [0, 1]: i.e., for Y; < 0
and Y, > 1.

o Defect 2: The error terms u; are heteroskedastic — i.e., have nonconstant variances.

o Result: It can be shown that

ciz Var(ui XIT) = Pr(Y; =1]x}") [1 — Pr(Y; =1|XiT)]

= x;B(1 - x{PB) (5)

# apositive constant foralli=1, ..., N

« Implications:

1. OLS estimators of Var(ﬁ j)are biased and inconsistent.

2. t-tests and F-tests based on V¢ = &7 (XTX)_1 are invalid.

ECON 452*: Filename 452intronotel3_slides.doc ... Page 6 of 17 pages



ECON 452*: Introduction to Binary Dependent VVariables Models M.G. Abbott

« One Remedy for Defect 2: Use heteroskedasticity-consistent estimators of VB = V(f}OLS).

Use either
Ve = (XX XV X(XTX) (6.1)
or
o N ~ N T —1 T T —1
V, = Ve = —I X' X] X' VXIX X 7.1
e = 7 Ve = < (X'X) (x"x) (.
where V is the NxN diagonal matrix
o _
0 @ 0
V= diag@> a2 & i2)=lo o @ 0
0 0 0 - 8
42 = (Y, —xB)* = the squared unrestricted OLS residuals fori=1, ..., N
... Page 7 of 17 pages
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Then perform hypothesis tests on the coefficient vector B using either of the following heteroskedasticity-

consistent Wald F-statistics:
Hy: RB=r < RB-r=0

H;: RB#r < RB-r=0

R = (RB - r)T(RVHCT RT )—I(RB - r) N Flq. N — K] under H,

(RB - Y)T (R\A’Hccll R )_1 (Rﬁ - r) ~ Flq, N—K] under H,

FHc1 =

(6.2)

(7.2)
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How to do this in Stata: How to compute heteroskedasticity-consistent Wald F-statistics when estimating a
linear probability model by OLS.

= Consider the following linear regression equation (which could have a binary regressand Y;):
Y, =B +BX;, + B, X, + B X +B. X, +u
= We want to perform the following test of two coefficient exclusion restrictions on this model:

Ho: B3=Oand B4:0
H;: B3 # 0 and/or B4#0

* The following two Stata commands will estimate the above model by OLS and perform a
heteroskedasticity-consistent Wald F-test of the two coefficient restrictions specified by the null hypothesis

H():

regress y x1 x2 x3 x4, robust
test x3 x4

« The regress command with the robust option computes all coefficient standard errors, t-ratios and
confidence intervals using the adjusted HC covariance estimator V.. :

NI:IK e = — (X)X x (XX (7.1)

Ve =
HC1 N_K
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 The test command computes the heteroskedasticity-consistent (or heteroskedasticity-robust) Wald F-
statistic Fyc; for the two linear coefficient restrictions specified by the null hypothesis Hy:

A T ~ —1 A
Fyey = (RA 1) (RVHC(;I RT) (RA 1) ~ Flq, N—K] under H, (7.2)
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2. The Basics of Maximum Likelihood Estimation
This section introduces the basic principles of maximum likelihood estimation.
e ML estimation involves joint estimation of all the unknown parameters of a statistical model.

Let 0 denote the vector of all unknown parameters of the statistical model in question.

For example, for the linear probability model Y; = xiTB + u; where Y; = {0, 1 }, the parameter vector 0 = f3, the
Kx1 vector of regression coefficients.

ML estimation therefore requires that the model in question be completely specified. Complete specification of
the model includes specifying the specific form of the probability distribution of the model's random variables.

e Derivation and computation of the ML estimator the parameter vector O consists of three main steps:

Step 1: Formulation of the joint probability density function (pdf) and sample likelihood function of the
statistical model.

Step 2: Formulation of the sample log-likelihood function of the statistical model.

Step 3: Maximization of the sample log-likelihood function with respect to the unknown parameters in the
vector 0.
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STEP 1: Formulation of the Sample Likelihood Function

e Assumption A4 of independent random sampling implies that the joint pdf of all N sample values of Y; is
simply the product of the pdf's of the individual Y; values.

e Under the assumption of independent random sampling, the joint pdf of the N sample values {Y3, Y, ..., Yn}
can be written as

N
f(y;0) = £(Y};0)-£(Y5;0)----T(Yyn;0) = [[1(Y;50). (8)
i=1

Note: The joint pdf f(y; 0) is a function of the N sample values of Y, {Yi c1i=1L...,N }; the parameter vector
0 is assumed to be known.

« Define the likelihood function of the sample data {Y;: i=1,...,N } as
N
L0;y) = L(0; Y}, Y, ..., Yx) = [[£(Y;;0) )
i=1

where the sample likelihood function L(0;y) treats the parameters in the vector 6 as the unknowns and the
sample values (Y}, Y5, ..., Yy) of the random variable Y as the knowns.
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o The ML Estimator of 0 is that value of the parameter vector 6 which maximizes the sample likelihood
function (9):

R N
By = maxL(0: y) = max [ [£(Y;; ) (10)
i=1
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STEP 2: Formulation of the Sample Log-Likelihood Function

o Computation of éML : It is often easier to maximize the natural logarithm of the sample likelihood function
L(0; y) than it is to maximize L(6;y) directly.

e The sample log-likelihood function is obtained by simply taking the natural logarithm of the sample likelihood
function L(0;y) in (9):

N
L©;y) = L(0; Y}, Yy, ..., Yy) = [[(Y;;0) )
i=1
The sample log-likelihood function is therefore:
N
InL(0;y) = InL(B; Y}, Yy, ..., Yy) = 2. Inf(Y;; 0) (11)
i=1

Note:

1. Because 0 < L(0;y) <1, InL(0;y) < 0.

2. The sample log-likelihood function is interpreted as a function of the parameters 0 for given sample
values y = (Y; Y, Y; --- Yy ) of the observable random variable Y.
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STEP 3: Maximization of the Sample Log-Likelihood Function

e The ML estimator of 0 is that value of the parameter vector 6 which maximizes the sample log-likelihood
function (9):

R N
Oy = maxInL(0;y) = max ) Inf(Y;;0) (12)
0 O =1

e Equivalence of maximizing the likelihood and log-likelihood functions.

Since the sample log-likelihood function InL(0;y) is a positive monotonic transformation of the sample

likelihood function L(0;y), that value of the parameter vector O which maximizes L(0; y) also maximizes
InL(0;y):

éML = mgle(G; y) = mgXInL(O; y). (13)

The reason is that, for any individual parameter 0;,

oInL(;y) _ 1 9L(0;y) _ 0L(0;y)/06;
00; L 060, L

where L > 0. (14)
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Thus,

oL(O:y) _

olnL(0;y) - 0:
00,

OlnL(0:;y) _,,.
00 ’

0lnL(0;y) <o.
00,
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Q Statistical Properties of the ML Parameter Estimators

All ML estimators exhibit three large sample properties: consistency, asymptotic efficiency, and asymptotic
normality.

1. Consistency: the probability limit of 8y, = 0; plim(6, ) = 6.

2. Asymptotic efficiency: Asy Var( 0 ML) < Asy Var( éj ), the asymptotic variance of any other consistent

estimator éj of 0 i

3. Asymptotic normality: 6y, ~ N[e, AsyV(é)].
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