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ECON 452* -- Introduction to NOTES 13 and 14 
 

Introduction to Binary Dependent Variables Models 
 

1.  The Linear Probability Model 
 
The linear probability model – or LPM – looks exactly like a standard linear regression model, except that the 
regressand Yi is a binary variable that takes only two discrete values, 0 and 1.  
 

 The population regression equation (PRE) of the LPM is:  
 

iikk2i21i10iii uXXXuxY +β++β+β+β=+β= Τ L       (i = 1, …, N)         (1) 
 

where 
 

{ }1,0Yi = .  
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 Interpretation of the Regression Coefficients in the LPM 

 
Question:  How should the slope coefficients βj (j = 1, …, k) be interpreted when Yi is a binary dependent 

variable? 
 

Answer:  
 
Under the zero conditional mean error assumption – Assumption A2:  
 

( ) 0xuE T
ii =           (A2) 

 
Implication of A2: 
 

( ) 0xuE T
ii =  ⇒  ( ) ikk2i21i10i

T
ii XXXxxYE β++β+β+β=β= Τ L   
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Key Point: When Yi is a binary dependent variable, 
 

( ) ( ) β=== Τ
i

T
ii

T
ii xxYEx1YPr               (2) 

 
1. ( ) β== Τ

i
T
ii xx1YPr  is called generically the response probability or probability of “success”.  

 
2. ( ) ( ) 1x0YPrx1YPr T

ii
T
ii ==+=   for all Τ

ix

3. 

.  
 

( ) ( ) 1x0YPrx1YPr T
ii

T
ii ==+=  implies that 

 
( ) ( )T

ii
T
ii x1YPr1x0YPr =−==  

 ( )T
ii xYE1 −=  

           (3) β−= T
ix1
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Interpretation of Slope Coefficients βj in the Linear Probability Model  
 
Let Xj change by  ΔXj ; hold values of all other regressors constant.  
 
The resulting change in ( ) β== Τ

i
T
ii xx1YPr  is: 

 
( ) ( ) jj

T
ii

T
ii XxYEx1YPr Δβ=Δ==Δ . 

 
Therefore,  
 

( )
jg,0Xj

T
ii

j

g

X
x1YPr

≠∀=Δ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
=Δ

=β  

 
=  the change in the probability that Yi = 1 associated with a one-unit increase in Xj, holding constant the 

values of all other explanatory variables 
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 OLS Estimation of the LPM 

 
• OLS estimation of the PRE iii uxY +β= Τ  yields the OLS sample regression equation (OLS SRE): 
 

iiiii ûŶûˆxY +=+β= Τ           (4) 
 

where 
 

β= Τ ˆxŶ ii  =  the estimated or predicted value of Yi  
 

β−=−= Τ ˆxYŶYû iiiii  = the OLS residual for the i-th observation 
 

( ) yXXXˆ T1T −
=β  = the OLS estimator of regression coefficient vector β 

 
• Properties of OLS estimator  β̂

 
β̂  is unbiased:   β=β)ˆ(E  

β̂  is consistent:   β=β)ˆlim(p  

β̂  is inefficient:   is not the minimum variance estimator of β β̂
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 Two Major Defects of OLS Estimation of BDV Models  
 

• Defect 1: Predictions outside the unit interval [0, 1] 
 

β= Τ ˆxŶ ii   is an estimator of ( ) β== Τ
i

T
ii xx1YPr   

 
But it is nonetheless possible for the values of β= Τ ˆxŶ ii  to lie outside the unit interval [0, 1]: i.e., for  
and ˆ .  

0Ŷi <

1Yi >

• Defect 2
 

: The error terms ui are heteroskedastic – i.e., have nonconstant variances.  
 

• Result: It can be shown that 
 

( ) [ ])x|1YPr(1)x|1YPr(xuVar iiiiii
2
i

ΤΤΤ =−==≡σ  
 

)x1(x ii β−β= ΤΤ           (5) 
 

 ≠  a positive constant for all i = 1, …, N 
 
• Implications:  

 
1. OLS estimators of are biased and inconsistent.  )ˆ(Var jβ

2. t-tests and F-tests based on ( ) 1T2
OLS XXˆV̂

−
σ=  are invalid.  
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• One Remedy for Defect 2: Use heteroskedasticity-consistent estimators of . )ˆ(VV OLSˆ β=β

 
Use either  
 

( ) ( ) 1TT1T
HC XXXV̂XXXV̂ −−

=          (6.1) 
or 

( ) ( ) 1TT1T
HC1HC XXXV̂XXX

KN
NV̂

KN
NV̂

−−

−
=

−
=          (7.1) 

 
where  is the N×N diagonal matrix  V̂
 

( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

2
N

2
3

2
2

2
1

2
N

2
3

2
2

2
1

û000

0û00
00û0
000û

ûûûûdiagV̂

L

MOMMM

L

L

L

L   

 
2

ii
2
i )ˆxY(û β−= Τ  =  the squared unrestricted OLS residuals for i = 1, …, N 
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Then perform hypothesis tests on the coefficient vector β using either of the following heteroskedasticity-
consistent Wald F-statistics: 
 

H0: Rβ = r ⇔  Rβ − r = 0 

 H1: Rβ ≠ r ⇔  Rβ − r ≠ 0   
 

( ) ( ) ( ) ]KN,q[F~
q

rˆRRV̂RrˆRF
a1T

HC
T

HC −
−β−β

=
−

 under H0           (6.2) 

 

( ) ( ) ( ) ]KN,q[F~
q

rˆRRV̂RrˆRF
a1T

1HC
T

1HC −
−β−β

=
−

 under H0          (7.2) 
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How to do this in Stata: How to compute heteroskedasticity-consistent Wald F-statistics when estimating a 
linear probability model by OLS. 
 
 Consider the following linear regression equation (which could have a binary regressand Yi):  

 
i4i43i32i21i10i uXXXXY +β+β+β+β+β=

 We want to perform the following test of two coefficient exclusion restrictions on this model: 

  
 

 
H0: β3 = 0 and  β4 = 0 
H1: β3 ≠ 0 and/or  β4 ≠ 0 

 
 The following two Stata commands will estimate the above model by OLS and perform a 

heteroskedasticity-consistent Wald F-test of the two coefficient restrictions specified by the null hypothesis 
H0:  

 
regress y x1 x2 x3 x4, robust 
test x3 x4 

 
• The regress command with the robust option computes all coefficient standard errors, t-ratios and 

confidence intervals using the adjusted HC covariance estimator :  1HCV̂
 

( ) ( ) 1TT1T
HC1HC XXXV̂XXX

KN
NV̂

KN
NV̂

−−

−
=

−
=              (7.1) 
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• The test command computes the heteroskedasticity-consistent (or heteroskedasticity-robust) Wald F-

statistic FHC1 for the two linear coefficient restrictions specified by the null hypothesis H0:  
 

( ) ( ) ( ) ]KN,q[F~
q

rˆRRV̂RrˆRF
a1T

1HC
T

1HC −
−β−β

=
−

 under H0         (7.2) 
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2.  The Basics of Maximum Likelihood Estimation 
 
This section introduces the basic principles of maximum likelihood estimation.  
 
• ML estimation involves joint estimation of all the unknown parameters of a statistical model.  
 

Let θ denote the vector of all unknown parameters of the statistical model in question.  
 
For example, for the linear probability model iii uxY +β= Τ  where { }1,0Yi = , the parameter vector θ = β, the 
K×1 vector of regression coefficients.  
 
ML estimation therefore requires that the model in question be completely specified. Complete specification of 
the model includes specifying the specific form of the probability distribution of the model's random variables.   

 
• Derivation and computation of the ML estimator the parameter vector θ consists of three main steps:  
 

Step 1: Formulation of the joint probability density function (pdf) and sample likelihood function of the 
statistical model. 

 
Step 2: Formulation of the sample log-likelihood function of the statistical model.   
 
Step 3: Maximization of the sample log-likelihood function with respect to the unknown parameters in the 

vector θ.   
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STEP 1: Formulation of the Sample Likelihood Function 
 
• Assumption A4 of independent random sampling implies that the joint pdf of all N sample values of Yi is 

simply the product of the pdf's of the individual Yi values.  
 
• Under the assumption of independent random sampling, the joint pdf of the N sample values {Y1, Y2, …, YN} 

can be written as 
 

∏
=

θ=θ⋅⋅θ⋅θ=θ
N

1i
iN21 );Y(f);Y(f);Y(f);Y(f);y(f L .           (8) 

 
Note: The joint pdf  is a function of the N sample values of Y, );y(f θ { }N,,1i:Yi K= ; the parameter vector 

θ is assumed to be known.  
 

• Define the likelihood function of the sample data { }N,,1i:Yi K=  as 
 

∏
=

θ=θ=θ
N

1i
iN11 );Y(f)Y,,Y,Y;(L)y;(L K            (9) 

 
where the sample likelihood function )y;(L θ  treats the parameters in the vector θ as the unknowns and the 
sample values )Y,,Y,Y( of the random variable Y as the knowns.  N21 K
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• The ML Estimator of θ is that value of the parameter vector θ which maximizes the sample likelihood 

function (9):  
 

∏
=θθ

θ=θ=θ
N

1i
iML );Y(fmax)y;(Lmaxˆ           (10) 
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STEP 2: Formulation of the Sample Log-Likelihood Function 
 
• Computation of MLθ̂ : It is often easier to maximize the natural logarithm of the sample likelihood function 

)y;(L θ  than it is to maximize )y;(L θ  directly.  
 
• The sample log-likelihood function is obtained by simply taking the natural logarithm of the sample likelihood 

function )y;(L θ  in (9):  
 

∏
=

θ=θ=θ
N

1i
iN11 );Y(f)Y,,Y,Y;(L)y;(L K            (9) 

 
The sample log-likelihood function is therefore:  
 

∑
=

θ=θ=θ
N

1i
iN11 );Y(fln)Y,,Y,Y;(Lln)y;(Lln K           (11) 

 
Note:   
 
1. Because , 1)y;(L0 <θ< 0)y;(Lln <θ .  
 
2. The sample log-likelihood function is interpreted as a function of the parameters θ for given sample 

values ( ) of the observable random variable Y.  N321 YYYYy L=
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STEP 3: Maximization of the Sample Log-Likelihood Function 
 
• The ML estimator of θ is that value of the parameter vector θ which maximizes the sample log-likelihood 

function (9):  
 

∑
=θθ

θ=θ=θ
N

1i
iML );Y(flnmax)y;(Llnmaxˆ           (12) 

 
• Equivalence of maximizing the likelihood and log-likelihood functions.  
 

Since the sample log-likelihood function )y;(Lln θ  is a positive monotonic transformation of the sample 
likelihood function )y;(L θ , that value of the parameter vector θ which maximizes )y;(L θ  also maximizes 

)y;(Lln θ :  
 

)y;(Llnmax)y;(Lmaxˆ
ML θ=θ=θ

θθ
.           (13) 

 
The reason is that, for any individual parameter θj,   
 

j

)y;(Lln
θ∂
θ∂  = 

j

)y;(L
L
1

θ∂
θ∂  = 

L
)y;(L jθ∂θ∂

  where L > 0.          (14) 
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Thus,  
 

j

)y;(L
θ∂
θ∂  > 0  ⇒  

j

)y;(Lln
θ∂
θ∂   > 0; 

j

)y;(L
θ∂
θ∂   = 0  ⇒  

j

)y;(Lln
θ∂
θ∂   = 0; 

j

)y;(L
θ∂
θ∂   < 0  ⇒  

j

)y;(Lln
θ∂
θ∂   < 0. 
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All ML estimators exhibit three large sample properties: consistency, asymptotic efficiency, and asymptotic 
normality.  

 
 Statistical Properties of the ML Parameter Estimators 

 

 
1. Consistency: the probability limit of = θ; plim( ) = θ.  MLθ̂ ML

2. Asymptotic efficiency: Asy Var( ) ≤ Asy Var(ML,jθ̂ j
~θ ), the asymptotic variance of any other consistent 

estimator 

θ̂

[ ])ˆ(AsyV,N~ˆ
a

ML θθθ . 

 of . j
~θ jθ

3. Asymptotic normality: 
 
 

 

 


