Desirable Statistical Properties of Estimators

1. Two Categories of Statistical Properties

There are *two categories of statistical properties of estimators*.

(1) Small-sample, or finite-sample, properties of estimators

The most fundamental *desirable <i>small-sample properties* of an estimator are:

- S1. Unbiasedness
- S2. Minimum Variance
- S3. Efficiency

(2) Large-sample, or asymptotic, properties of estimators

The most important *desirable large-sample property* of an estimator is:

L1. Consistency

Both sets of statistical properties refer to the **properties of the** *sampling distribution*, or *probability distribution*, of the estimator $\hat{\beta}_i$ for different sample sizes.

1.1 <u>Small-Sample (Finite-Sample) Properties</u>

□ The *small-sample*, *or finite-sample*, *properties* of the estimator $\hat{\beta}_j$ refer to the properties of the sampling distribution of $\hat{\beta}_j$ for any sample of fixed size N, where N is a finite number (i.e., a number less than infinity) denoting the number of observations in the sample.

 $N = number of sample observations, where <math>N < \infty$.

<u>Definition</u>: The sampling distribution of $\hat{\beta}_j$ for any finite sample size $N < \infty$ is called the *small-sample, or* finite-sample, distribution of the estimator $\hat{\beta}_j$. In fact, there is a family of finite-sample distributions for the estimator $\hat{\beta}_j$, one for each finite value of N.

- **D** The sampling distribution of $\hat{\beta}_i$ is based on the concept of *repeated sampling*.
 - Suppose a large number of samples of size N are randomly selected from some underlying population.
 - Each of these samples **contains N observations**.
 - Each of these samples in general **contains** *different* **sample values** of the observable random variables that enter the formula for the estimator $\hat{\beta}_i$.
 - For each of these samples of N observations, the formula for $\hat{\beta}_j$ is used to compute a *numerical estimate* of the population parameter β_j .
 - Each sample yields a *different* numerical *estimate* of the unknown parameter β_j.
 Why? Because each sample typically contains different sample values of the observable random variables that enter the formula for the estimator β_i.
 - If we tabulate or plot these different sample estimates of the parameter β_j for a very large number of samples of size N, we obtain the *small-sample*, *or finite-sample*, *distribution* of the estimator $\hat{\beta}_j$.

1.2 Large-Sample (Asymptotic) Properties

□ The *large-sample*, or *asymptotic*, properties of the estimator $\hat{\beta}_j$ refer to the properties of the sampling distribution of $\hat{\beta}_j$ as the sample size N becomes indefinitely large, i.e., as sample size N approaches infinity (as $N \rightarrow \infty$).

Definition: The probability distribution to which the sampling distribution of $\hat{\beta}_j$ converges as sample size N becomes indefinitely large (i.e., as $N \to \infty$) is called the *ultimate distribution* of the estimator $\hat{\beta}_j$.

2. Small-Sample Estimator Properties

Nature of Small-Sample Properties

- □ The *small-sample, or finite-sample, distribution* of the estimator $\hat{\beta}_j$ for any finite sample size N < ∞ has
 - **1.** a *mean*, or expectation, denoted as $E(\hat{\beta}_i)$, and
 - **2.** a *variance* denoted as $Var(\hat{\beta}_j)$.
- □ The *small-sample* properties of the estimator $\hat{\beta}_j$ are defined in terms of the *mean* $\mathbf{E}(\hat{\beta}_j)$ and the *variance* $\mathbf{Var}(\hat{\beta}_i)$ of the *finite-sample* distribution of the estimator $\hat{\beta}_j$ for any finite sample size N < ∞.

S1: <u>Unbiasedness</u>

Definition of Unbiasedness: The estimator $\hat{\beta}_j$ is an *unbiased* estimator of the population parameter β_j if the mean or expectation of the finite-sample distribution of $\hat{\beta}_j$ is equal to the true β_j . That is, $\hat{\beta}_j$ is an *unbiased* estimator of β_j if

$$\mathbf{E}(\hat{\boldsymbol{\beta}}_{j}) = \boldsymbol{\beta}_{j}$$
 for any given finite sample size $N < \infty$.

Definition of the Bias of an Estimator: The *bias* of the estimator $\hat{\beta}_j$ is defined as

$$\operatorname{Bias}(\hat{\beta}_{j}) = \operatorname{E}(\hat{\beta}_{j}) - \beta_{j} = \operatorname{the} \operatorname{mean} \operatorname{of} \hat{\beta}_{j} \operatorname{minus} \operatorname{the} \operatorname{true} \operatorname{value} \operatorname{of} \beta_{j}.$$

• The estimator $\hat{\beta}_j$ is an *unbiased* estimator of the population parameter β_j if the bias of $\hat{\beta}_j$ is equal to zero; i.e., if

$$Bias(\hat{\beta}_{j}) = E(\hat{\beta}_{j}) - \beta_{j} = 0 \quad \iff \quad E(\hat{\beta}_{j}) = \beta_{j}.$$

• Alternatively, the estimator $\hat{\beta}_j$ is a *biased* estimator of the population parameter β_j if the bias of $\hat{\beta}_j$ is non-zero; i.e., if

$$\operatorname{Bias}(\hat{\beta}_{j}) = E(\hat{\beta}_{j}) - \beta_{j} \neq 0 \quad \Leftrightarrow \quad E(\hat{\beta}_{j}) \neq \beta_{j}.$$

ECON 351* -- Note 3: Desirable Properties of Estimators

... Page 6 of 14 pages

1. The estimator $\hat{\beta}_j$ is an *upward biased* (or **positively biased**) estimator the population parameter β_j if the **bias of** $\hat{\beta}_j$ is greater than zero; i.e., if

 $Bias(\hat{\beta}_{j}) = E(\hat{\beta}_{j}) - \beta_{j} > 0 \quad \Leftrightarrow \quad E(\hat{\beta}_{j}) > \beta_{j}.$

2. The estimator $\hat{\beta}_j$ is a *downward biased* (or **negatively biased**) estimator of the population parameter β_j if the bias of $\hat{\beta}_j$ is *less than zero*; i.e., if

 $Bias(\hat{\beta}_{j}) = E(\hat{\beta}_{j}) - \beta_{j} < 0 \quad \Leftrightarrow \quad E(\hat{\beta}_{j}) < \beta_{j}.$

Meaning of the Unbiasedness Property

- The estimator $\hat{\beta}_{j}$ is an unbiased estimator of β_{j} if *on average* it *equals* the true parameter value β_{j} .
 - This means that on average the estimator $\hat{\beta}_j$ is correct, even though any single estimate of β_j for a particular sample of data may not equal β_j .
 - More technically, it means that the finite-sample distribution of the estimator $\hat{\beta}_j$ is *centered* on the value β_j , not on some other real value.
- The *bias* of an estimator is an *inverse* measure of its average accuracy.
 - The smaller in absolute value is $Bias(\hat{\beta}_j)$, the more accurate on average is the estimator $\hat{\beta}_j$ in estimating the population parameter β_j .
 - Thus, an *unbiased* estimator for which $Bias(\hat{\beta}_j) = 0$ -- that is, for which $E(\hat{\beta}_j) = \beta_j$ -- is on average a perfectly accurate estimator of β_j .
- Given a choice between two estimators of the same population parameter β_j , of which one is biased and the other is unbiased, we prefer the unbiased estimator because it is more accurate on average than the biased estimator.

S2: Minimum Variance

Definition of Minimum Variance: The estimator $\hat{\beta}_j$ is a minimum-variance estimator of the population parameter β_j if the variance of the finite-sample distribution of $\hat{\beta}_j$ is less than or equal to the variance of the finite-sample distribution of $\tilde{\beta}_j$, where $\tilde{\beta}_j$ is any other estimator of the population parameter β_j ; i.e., if

$$\operatorname{Var}(\hat{\beta}_{j}) \leq \operatorname{Var}(\tilde{\beta}_{j})$$
 for all *finite* sample sizes N such that $0 < N < \infty$

where

$$Var(\hat{\beta}_{j}) = E[\hat{\beta}_{j} - E(\hat{\beta}_{j})]^{2} = \text{ the variance of the estimator } \hat{\beta}_{j};$$
$$Var(\tilde{\beta}_{j}) = E[\tilde{\beta}_{j} - E(\tilde{\beta}_{j})]^{2} = \text{ the variance of any other estimator } \tilde{\beta}_{j}.$$

Note: Either or both of the estimators $\hat{\beta}_j$ and $\tilde{\beta}_j$ may be biased. The minimum variance property implies nothing about whether the estimators are biased or unbiased.

Meaning of the Minimum Variance Property

- The *variance* of an estimator is an *inverse* measure of its *statistical precision*, i.e., of its dispersion or spread around its mean. The *smaller* the variance of an estimator, the *more* statistically precise it is.
- A *minimum variance* estimator is therefore the statistically *most precise* estimator of an unknown population parameter, although it may be biased or unbiased.

S3: Efficiency

A Necessary Condition for Efficiency -- Unbiasedness

The small-sample property of efficiency is defined only for unbiased estimators.

Therefore, a *necessary condition for efficiency* of the estimator $\hat{\beta}_j$ is that $E(\hat{\beta}_j) = \beta_j$, i.e., $\hat{\beta}_j$ must be an *unbiased* estimator of the population parameter β_j .

Definition of Efficiency: Efficiency = Unbiasedness + Minimum Variance

Verbal Definition: If $\hat{\beta}_j$ and $\tilde{\beta}_j$ are two unbiased estimators of the population parameter β_j , then the estimator $\hat{\beta}_j$ is efficient relative to the estimator $\tilde{\beta}_j$ if the variance of $\hat{\beta}_j$ is smaller than the variance of $\tilde{\beta}_j$ for any finite sample size $N < \infty$.

Formal Definition: Let $\hat{\beta}_j$ and $\tilde{\beta}_j$ be two *unbiased* estimators of the population parameter β_j , such that $E(\hat{\beta}_j) = \beta_j$ and $E(\tilde{\beta}_j) = \beta_j$. Then the estimator $\hat{\beta}_j$ is *efficient relative to* the estimator $\tilde{\beta}_j$ if the variance of the finite-sample distribution of $\hat{\beta}_j$ is less than or at most equal to the variance of the finite-sample distribution of $\tilde{\beta}_j$; i.e. if

$$\operatorname{Var}(\hat{\beta}_{j}) \leq \operatorname{Var}(\widetilde{\beta}_{j})$$
 for all finite N where $E(\hat{\beta}_{j}) = \beta_{j}$ and $E(\widetilde{\beta}_{j}) = \beta_{j}$.

Note: Both the estimators $\hat{\beta}_j$ and $\tilde{\beta}_j$ must be *unbiased*, since the efficiency property refers only to the variances of unbiased estimators.

Meaning of the Efficiency Property

- Efficiency is a desirable statistical property because of two *unbiased* estimators of the same population parameter, we prefer the one that has the *smaller* variance, i.e., the one that is statistically more precise.
- In the above definition of efficiency, if β_j is any other unbiased estimator of the population parameter β_j, then the estimator β_j is the best unbiased, or minimum-variance unbiased, estimator of β_j.

3. Large Sample Estimator Properties

L1: Consistency – the minimal requirement of any useful estimator

Definition of Consistency

Verbal Definition: Let $\hat{\beta}_j(N)$ denote an estimator of the population parameter β_j based on a sample of size N observations. The estimator $\hat{\beta}_j(N)$ is a *consistent* estimator of the population parameter β_j if its sampling distribution *collapses on*, or *converges to*, the value of the population parameter β_j as $N \to \infty$.

Formal Definition: The estimator $\hat{\beta}_j(N)$ is a *consistent* estimator of the population parameter β_j if the *probability limit of* $\hat{\beta}_j(N)$ is β_j , i.e., if

$$\lim_{N\to\infty}\hat{\beta}_{j}(N) = \beta_{j} \quad or \quad \lim_{N\to\infty} \Pr\left(\left|\hat{\beta}_{j}(N) - \beta_{j}\right| \le \varepsilon\right) = 1 \quad or \; \Pr\left(\left|\hat{\beta}_{j} - \beta_{j}\right| \le \varepsilon\right) \to 1 \; \text{ as } \; N \to \infty.$$

The estimator $\hat{\beta}_{i}(N)$ is a *consistent* estimator of the population parameter β_{j}

• if the probability that $\hat{\beta}_j(N)$ is arbitrarily close to β_j approaches 1 as the sample size $N \to \infty$ or

• if the estimator $\hat{\beta}_j(N)$ converges in probability to the population parameter β_j .

Intuitive Meaning of the Consistency Property

- As sample size N becomes larger and larger, the sampling distribution of $\hat{\beta}_j(N)$ becomes more and more concentrated around β_j .
- As sample size N becomes larger and larger, the value of $\hat{\beta}_{j}(N)$ is more and more likely to be very close to β_{j} .

A Sufficient Condition for Consistency

One way of determining if the estimator $\hat{\beta}_j(N)$ is consistent is to trace the behavior of the sampling distribution of $\hat{\beta}_j(N)$ as sample size N becomes larger and larger.

- If as $N \to \infty$ (sample size N approaches infinity) <u>both</u> the *bias* of $\hat{\beta}_j(N)$ and the *variance* of $\hat{\beta}_j(N)$ approach *zero*, then $\hat{\beta}_j(N)$ is a *consistent* estimator of the parameter β_j .
- Recall that the bias of $\hat{\beta}_j(N)$ is defined as $\text{Bias}(\hat{\beta}_j(N)) = E(\hat{\beta}_j(N)) \beta_j$.

Thus, the bias of $\hat{\beta}_j(N)$ approaches zero as $N \to \infty$ if and only if the *mean* or *expectation* of the sampling distribution of $\hat{\beta}_j(N)$ approaches β_j as $N \to \infty$:

$$\lim_{N\to\infty} \operatorname{Bias}(\hat{\beta}_{j}(N)) = \lim_{N\to\infty} E(\hat{\beta}_{j}(N)) - \beta_{j} = 0 \qquad \Leftrightarrow \qquad \lim_{N\to\infty} E(\hat{\beta}_{j}(N)) = \beta_{j}.$$

<u>Result</u>: A sufficient condition for consistency of the estimator $\hat{\beta}_i(N)$ is that

$$\lim_{N\to\infty} \operatorname{Bias}(\hat{\beta}_{j}(N)) = 0 \quad or \quad \lim_{N\to\infty} \operatorname{E}(\hat{\beta}_{j}(N)) = \beta_{j} \quad and \quad \lim_{N\to\infty} \operatorname{Var}(\hat{\beta}_{j}(N)) = 0.$$

This condition states that if both the *bias* and *variance* of the estimator $\hat{\beta}_j(N)$ approach zero as sample size $N \rightarrow \infty$ then $\hat{\beta}_i(N)$ is a *consistent* estimator of β_j .