if X simply consisted of a constant vector, $e_t^{\top} P_X e_t$ would equal 1/n. Even when there is no constant term, h_t can never be 0 unless every element of X_t is 0. However, it is evidently quite possible for h_t to equal 1. Suppose, for example, that one column of X is the dummy variable e_t . In that case, $h_t = e_t^{\top} P_X e_t = e_t^{\top} e_t = 1$.

It is interesting to see what happens when we add a dummy variable e_t to a regression. It turns out that \hat{u}_t will equal zero and that the t^{th} observation will have no effect at all on any coefficient except the one corresponding to the dummy variable. The latter simply takes on whatever value is needed to make $\hat{u}_t = 0$, and the remaining coefficients are those that minimize the SSR for the remaining n-1 observations. These results are easily established by using the FWL Theorem.

Consider the following two regressions, where for ease of notation the data have been ordered so that observation t is the last observation, and $y_{(t)}$ and $X_{(t)}$ denote the first n-1 rows of y and X, respectively:

$$\begin{bmatrix} \mathbf{y}_{(t)} \\ y_t \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{(t)} \\ \mathbf{X}_t \end{bmatrix} \boldsymbol{\beta} + \text{residuals}, \tag{1.43}$$

and

$$\begin{bmatrix} \mathbf{y}_{(t)} \\ y_t \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{(t)} & \mathbf{0} \\ \mathbf{X}_t & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \alpha \end{bmatrix} + \text{residuals.}$$
 (1.44)

Regression (1.43) is simply the regression of \boldsymbol{y} on \boldsymbol{X} , which yields parameter estimates $\hat{\boldsymbol{\beta}}$ and least squares residuals $\hat{\boldsymbol{u}}$. Regression (1.44) is regression (1.43) with \boldsymbol{e}_t as an additional regressor. By the FWL Theorem, the estimate of $\boldsymbol{\beta}$ from (1.44) must be identical to the estimate of $\boldsymbol{\beta}$ from the regression

$$M_t \begin{bmatrix} y_{(t)} \\ y_t \end{bmatrix} = M_t \begin{bmatrix} X_{(t)} \\ X_t \end{bmatrix} \beta + \text{residuals},$$
 (1.45)

where M_t is the matrix that projects orthogonally onto $S^{\perp}(e_t)$. Multiplying any vector by M_t merely annihilates the last element of that vector. Thus regression (1.45) is simply

$$\begin{bmatrix} \mathbf{y}_{(t)} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{(t)} \\ \mathbf{0} \end{bmatrix} \boldsymbol{\beta} + \text{residuals.}$$
 (1.46)

The last observation, in which the regressand and all regressors are zero, obviously has no effect at all on parameter estimates. Regression (1.46) is therefore equivalent to regressing $\mathbf{y}_{(t)}$ on $\mathbf{X}_{(t)}$ and so must yield OLS estimates $\hat{\boldsymbol{\beta}}^{(t)}$. For regression (1.46), the residual for observation t is clearly zero; the FWL Theorem then implies that the residual for observation t from regression (1.44) must likewise be zero, which implies that $\hat{\alpha}$ must equal $y_t - \mathbf{X}_t \hat{\boldsymbol{\beta}}^{(t)}$.

These results make it easy to derive the results (1.40) and (1.41), which were earlier stated without proof. Readers who are not interested in the