at $X\hat{\beta}$ instead of at zero. The right angle formed by $y - X\hat{\beta}$ and S(X) is the key feature of least squares. At any other point in S(X), such as $X\beta'$ in the figure, $y - X\beta'$ does not form a right angle with S(X) and, as a consequence, $||y - X\beta'||$ must necessarily be larger than $||y - X\hat{\beta}||$.

The vector of derivatives of the SSR (1.02) with respect to the elements of $\boldsymbol{\beta}$ is

$$-2\boldsymbol{X}^{\top}(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}),$$

which must equal $\mathbf{0}$ at a minimum. Since we have assumed that the columns of X are linearly independent, the matrix $X^{\top}X$ must have full rank. This, combined with that fact that any matrix of the form $X^{\top}X$ is necessarily nonnegative definite, implies that the sum of squared residuals is a strictly convex function of $\boldsymbol{\beta}$ and must therefore have a unique minimum. Thus $\hat{\boldsymbol{\beta}}$ is uniquely determined by the **normal equations**

$$\boldsymbol{X}^{\top}(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}) = \boldsymbol{0}. \tag{1.03}$$

These normal equations say that the vector $\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ must be orthogonal to all of the columns of \mathbf{X} and hence to any vector that lies in the space spanned by those columns. The normal equations (1.03) are thus simply a way of stating algebraically what Figure 1.2 showed geometrically, namely, that $\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ must form a right angle with $\mathbf{S}(\mathbf{X})$.

Since the matrix $X^{\top}X$ has full rank, we can always invert it to solve the normal equations for $\hat{\beta}$. We obtain the standard formula:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}. \tag{1.04}$$

Even if X is not of full rank, the fitted values $X\hat{\beta}$ are uniquely defined, because $X\hat{\beta}$ is simply the point in S(X) that is closest to y. Look again at Figure 1.2 and suppose that X is an $n \times 2$ matrix, but of rank only one. The geometrical point $X\hat{\beta}$ is still uniquely defined. However, since β is now a 2-vector and S(X) is just one-dimensional, the vector $\hat{\beta}$ is not uniquely defined. Thus the requirement that X have full rank is a purely algebraic requirement that is needed to obtain unique estimates $\hat{\beta}$.

If we substitute the right-hand side of (1.04) for $\hat{\beta}$ into $X\hat{\beta}$, we obtain

$$\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} \equiv \mathbf{P}_{X} \mathbf{y}. \tag{1.05}$$

This equation defines the $n \times n$ matrix $P_X \equiv X(X^\top X)^{-1}X^\top$, which **projects** the vector \boldsymbol{y} orthogonally onto $\mathcal{S}(\boldsymbol{X})$. The matrix P_X is an example of an **orthogonal projection matrix**. Associated with every linear subspace of E^n are two such matrices, one of which projects any point in E^n onto that subspace, and one of which projects any point in E^n onto its orthogonal complement. The matrix that projects onto $\mathcal{S}^\perp(\boldsymbol{X})$ is

$$M_X \equiv \mathbf{I} - P_X \equiv \mathbf{I} - X(X^{\top}X)^{-1}X^{\top},$$