and (18.20), be expressed as

$$egin{aligned} oldsymbol{\pi}_1 - oldsymbol{\varPi}_{11} oldsymbol{\gamma}_1 &= oldsymbol{eta}_1 \ oldsymbol{\pi}_2 - oldsymbol{\varPi}_{21} oldsymbol{\gamma}_1 &= oldsymbol{0}. \end{aligned}$$

The first of these two equations serves to define β_1 in terms of Π and γ_1 , and allows us to see that β_1 can be identified if γ_1 can be. The second equation shows that γ_1 is determined uniquely if and only if the submatrix Π_{21} has full column rank, that is, if the rank of the matrix is equal to the number of columns (see Appendix A). The submatrix Π_{21} has $k - k_1$ rows and g_1 columns. Therefore, if the order condition is satisfied, there are at least as many rows as columns. The condition for the identifiability of γ_1 , and so also of β_1 , is thus simply that the columns of Π_{21} in the DGP should be linearly independent.

It is instructive to show why this last condition is equivalent to the rank condition in terms of $\operatorname{plim}(n^{-1}\mathbf{Z}^{\top}P_X\mathbf{Z})$. If, as we have tacitly assumed throughout this discussion, the exogenous variables \mathbf{X} satisfy the condition that $\operatorname{plim}(n^{-1}\mathbf{X}^{\top}\mathbf{X})$ is positive definite, then $\operatorname{plim}(n^{-1}\mathbf{Z}^{\top}P_X\mathbf{Z})$ can fail to have full rank only if $\operatorname{plim}(n^{-1}\mathbf{X}^{\top}\mathbf{Z})$ has rank less than $g_1 + k_1$, the number of columns of \mathbf{Z} . The probability limit of the matrix $n^{-1}\mathbf{X}^{\top}\mathbf{Z}$ follows from (18.22), with \mathbf{X} replacing \mathbf{W} . If, for notational simplicity, we drop the probability limit and the factor of n^{-1} , which are not essential to the discussion, the matrix of interest can be written as

$$\begin{bmatrix} X_1^{\top} X_1 & X_1^{\top} X_1 \Pi_{11} + X_1^{\top} X_2 \Pi_{21} \\ X_2^{\top} X_1 & X_2^{\top} X_1 \Pi_{11} + X_2^{\top} X_2 \Pi_{21} \end{bmatrix}.$$
(18.23)

This matrix does not have full column rank of $g_1 + k_1$ if and only if there exists a nonzero $(g_1 + k_1)$ -vector $\boldsymbol{\theta} \equiv [\boldsymbol{\theta}_1 \vdots \boldsymbol{\theta}_2]$ such that postmultiplying (18.23) by $\boldsymbol{\theta}$ gives zero. If we write this condition out and rearrange slightly, we obtain

$$\begin{bmatrix} \mathbf{X}_1^{\top} \mathbf{X}_1 & \mathbf{X}_1^{\top} \mathbf{X}_2 \\ \mathbf{X}_2^{\top} \mathbf{X}_1 & \mathbf{X}_2^{\top} \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta}_1 + \boldsymbol{\Pi}_{11} \boldsymbol{\theta}_2 \\ \boldsymbol{\Pi}_{21} \boldsymbol{\theta}_2 \end{bmatrix} = \mathbf{0}.$$
 (18.24)

The first matrix on the left-hand side here is just $X^{\top}X$ and is therefore nonsingular. The condition reduces to the two vector equations

$$\boldsymbol{\theta}_1 + \boldsymbol{\Pi}_{11} \boldsymbol{\theta}_2 = \mathbf{0} \tag{18.25}$$

$$\boldsymbol{\Pi}_{21}\boldsymbol{\theta}_2 = \mathbf{0}.\tag{18.26}$$

If these equations hold for some nonzero $\boldsymbol{\theta}$, it is clear that $\boldsymbol{\theta}_2$ cannot be zero. Consequently, the second of these equations can hold only if $\boldsymbol{\Pi}_{21}$ has less than full column rank. It follows that if the rank condition in terms of $\boldsymbol{Z}^{\top}\boldsymbol{P}_X\boldsymbol{Z}$ does not hold, then it does not hold in terms of $\boldsymbol{\Pi}_{21}$ either. Conversely, suppose that (18.26) holds for some nonzero g_1 -vector $\boldsymbol{\theta}_2$. Then $\boldsymbol{\Pi}_{21}$ does not have full column rank. Define $\boldsymbol{\theta}_1$ in terms of this $\boldsymbol{\theta}_2$ and $\boldsymbol{\Pi}$ by means