they are related to y_t^* and z_t^* as follows:

$$y_t = y_t^*$$
 if $z_t^* > 0$; $y_t = 0$ otherwise; $z_t = 1$ if $z_t^* > 0$; $z_t = 0$ otherwise.

There are two types of observations: ones for which both y_t and z_t are observed to be zero and ones for which $z_t = 1$ and y_t is equal to y_t^* . The loglikelihood function for this model is thus

$$\sum_{z_t=0} \log (\Pr(z_t=0)) + \sum_{z_t=1} \log (\Pr(z_t=1) f(y_t^* \mid z_t=1)),$$
 (15.54)

where $f(y_t^* | z_t = 1)$ denotes the density of y_t^* conditional on $z_t = 1$. The first term of (15.54) is the summation over all observations for which $z_t = 0$ of the logarithms of the probability that $z_t = 0$. It is exactly the same as the corresponding term in a probit model for z_t by itself. The second term is the summation over all observations for which $z_t = 1$ of the probability that $z_t = 1$ times the density of y_t conditional on $z_t = 1$. Using the fact that we can factor a joint density any way we like, this second term can also be written as

$$\sum_{z_t=1} \log (\Pr(z_t = 1 \,|\, y_t^*) f(y_t^*)),$$

where $f(y_t^*)$ is the unconditional density of y_t^* , which is just a normal density with conditional mean $X_t\beta$ and variance σ^2 .

The only difficulty in writing out the loglikelihood function (15.54) explicitly is to calculate $\Pr(z_t = 1 | y_t^*)$. Since u_t and v_t are bivariate normal, we can write

$$z_t^* = \mathbf{W}_t \gamma + \rho \left(\frac{1}{\sigma} (y_t^* - \mathbf{X}_t \boldsymbol{\beta}) \right) + \varepsilon_t, \quad \varepsilon_t \sim \text{NID}(0, (1 - \rho^2)).$$

It follows that

$$\Pr(z_t = 1 \mid y_t^*) = \Phi\left(\frac{\boldsymbol{W}_t \boldsymbol{\gamma} + \rho((y_t - \boldsymbol{X}_t \boldsymbol{\beta})/\sigma)}{(1 - \rho^2)^{1/2}}\right),$$

since $y_t = y_t^*$ when $z_t = 1$. Thus the loglikelihood function (15.54) becomes

$$\sum_{z_{t}=0} \log \left(\Phi(-\boldsymbol{W}_{t}\boldsymbol{\gamma}) \right) + \sum_{z_{t}=1} \log \left(\frac{1}{\sigma} \phi \left((y_{t} - \boldsymbol{X}_{t}\boldsymbol{\beta}) / \sigma \right) \right)$$

$$+ \sum_{z_{t}=1} \log \left(\Phi\left(\frac{\boldsymbol{W}_{t}\boldsymbol{\gamma} + \rho \left((y_{t} - \boldsymbol{X}_{t}\boldsymbol{\beta}) / \sigma \right)}{(1 - \rho^{2})^{1/2}} \right) \right).$$

$$(15.55)$$

The first term looks like the corresponding term for a probit model. The