obtained by differentiating (3.42) with respect to $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$ and setting the derivatives to zero are

$$-X^{\mathsf{T}}(\tilde{\boldsymbol{\beta}})(y-x(\tilde{\boldsymbol{\beta}})) + R^{\mathsf{T}}\tilde{\boldsymbol{\lambda}} = 0$$
 (3.43)

$$R\tilde{\boldsymbol{\beta}} - \boldsymbol{r} = \boldsymbol{0},\tag{3.44}$$

where $\tilde{\beta}$ denotes the restricted estimates and $\tilde{\lambda}$ denotes the estimated Lagrange multipliers. From (3.43), we see that

$$R^{\mathsf{T}}\tilde{\lambda} = \tilde{X}^{\mathsf{T}}(y - \tilde{x}),\tag{3.45}$$

where, as usual, \tilde{x} and \tilde{X} denote $x(\tilde{\beta})$ and $X(\tilde{\beta})$. The expression on the right-hand side of (3.45) is minus the k-vector of the derivatives of $\frac{1}{2}SSR(\beta)$ with respect to all the elements of β , evaluated at $\tilde{\beta}$. This vector is often called the **score vector**. Since $y - \tilde{x}$ is simply a vector of residuals, which should converge asymptotically under H_0 to the vector of error terms u, it seems plausible that the asymptotic covariance matrix of the vector of scores is

$$\sigma_0^2 \mathbf{X}^{\mathsf{T}}(\boldsymbol{\beta}_0) \mathbf{X}(\boldsymbol{\beta}_0). \tag{3.46}$$

Subject to certain asymptotic niceties, that is indeed the case, and a more rigorous version of this result will be proved in Chapter 5.

The obvious way to estimate (3.46) is to use $\tilde{s}^2 \tilde{X}^{\top} \tilde{X}$, where \tilde{s}^2 is $SSR(\tilde{\beta})/(n-k+r)$. Putting this estimate together with the expressions on each side of (3.45), we can construct two apparently different, but numerically identical, test statistics. The first of these is

$$\tilde{\boldsymbol{\lambda}}^{\top} \boldsymbol{R} \left(\tilde{s}^{2} \tilde{\boldsymbol{X}}^{\top} \tilde{\boldsymbol{X}} \right)^{-1} \boldsymbol{R}^{\top} \tilde{\boldsymbol{\lambda}} = \frac{1}{\tilde{s}^{2}} \tilde{\boldsymbol{\lambda}}^{\top} \boldsymbol{R} \left(\tilde{\boldsymbol{X}}^{\top} \tilde{\boldsymbol{X}} \right)^{-1} \boldsymbol{R}^{\top} \tilde{\boldsymbol{\lambda}}. \tag{3.47}$$

In this form, the test statistic is clearly a Lagrange multiplier statistic. Since $\tilde{\lambda}$ is an r-vector, it should not be surprising that this statistic would be asymptotically distributed as $\chi^2(r)$. A proof that this is the case follows from essentially the same arguments used in the case of the Wald test, since (3.47) is a quadratic form similar to (3.37). Of course, the result depends critically on the vector $\tilde{\lambda}$ being asymptotically normally distributed, something that we will prove in Chapter 5.

The second test statistic, which we stress is numerically identical to the first, is obtained by substituting $\tilde{X}^{\top}(y-\tilde{x})$ for $R^{\top}\tilde{\lambda}$ in (3.47). The result, which is the **score form** of the LM statistic, is

$$\frac{1}{\tilde{s}^2}(\boldsymbol{y} - \tilde{\boldsymbol{x}})^{\top} \tilde{\boldsymbol{X}} (\tilde{\boldsymbol{X}}^{\top} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\top} (\boldsymbol{y} - \tilde{\boldsymbol{x}}) = \frac{1}{\tilde{s}^2} (\boldsymbol{y} - \tilde{\boldsymbol{x}})^{\top} \tilde{\boldsymbol{P}}_X (\boldsymbol{y} - \tilde{\boldsymbol{x}}), \quad (3.48)$$

where $\tilde{P}_X \equiv \tilde{X}(\tilde{X}^{\top}\tilde{X})^{-1}\tilde{X}^{\top}$. It is evident that this expression is simply the explained sum of squares from the **artificial linear regression**

$$\frac{1}{\tilde{s}}(\boldsymbol{y} - \tilde{\boldsymbol{x}}) = \tilde{\boldsymbol{X}}\boldsymbol{b} + \text{residuals}, \tag{3.49}$$