as can be seen directly from (13.82). Since the asymptotic equivalence of $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}$ requires the factors of $n^{1/2}$ that appear in (13.83), it can be seen why we wish to prove (13.82), with a factor of $n^{1/2}$ on each side of the equation, rather than the seemingly equivalent result that $\hat{\boldsymbol{c}} = \hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}$. Although this result is certainly true, it is weaker than (13.82), because it merely implies that $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}} = o(1)$, while (13.82) implies that $\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}} = o(n^{-1/2})$.

The proof of (13.82) is both simple and illuminating. A Taylor expansion of the gradient $\dot{q} \equiv q(\dot{\theta})$ around θ_0 yields

$$n^{-1/2} \acute{\boldsymbol{g}} = n^{-1/2} \boldsymbol{g}_0 + n^{-1} \boldsymbol{H}(\boldsymbol{\theta}_0) n^{1/2} (\acute{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + O(n^{-1/2}),$$

where, as usual, $H(\theta)$ denotes the Hessian of the loglikelihood function $\ell(\theta)$. If now we expand \hat{g} , which is zero by the first-order conditions for a maximum of the likelihood at $\hat{\theta}$, we obtain

$$\mathbf{0} = n^{-1/2} \mathbf{g}_0 + n^{-1} \mathbf{H}(\boldsymbol{\theta}_0) n^{1/2} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + O(n^{-1/2}).$$

On subtracting the last two equations and noting that $\dot{g} = \dot{G}^{\mathsf{T}}\iota$, we find that

$$n^{-1/2} \mathbf{\acute{G}}^{\mathsf{T}} \iota = n^{-1} \mathbf{H}(\mathbf{\theta}_0) n^{1/2} (\mathbf{\acute{\theta}} - \mathbf{\acute{\theta}}) + O(n^{-1/2}). \tag{13.84}$$

By the information matrix equality, $n^{-1}\boldsymbol{H}(\boldsymbol{\theta}_0) = -\mathfrak{I}_0 + o(1)$. Since, by the consistency of $\boldsymbol{\dot{\theta}}$, we have $n^{-1}\boldsymbol{\dot{G}}^{\top}\boldsymbol{\dot{G}} = \mathfrak{I}_0 + o(1)$, we may replace $n^{-1}\boldsymbol{H}(\boldsymbol{\theta}_0)$ in (13.84) by $-n^{-1}\boldsymbol{\dot{G}}^{\top}\boldsymbol{\dot{G}}$ to obtain

$$n^{-1/2} \mathbf{\acute{G}}^{\mathsf{T}} \boldsymbol{\iota} = (n^{-1} \mathbf{\acute{G}}^{\mathsf{T}} \mathbf{\acute{G}}) n^{1/2} (\hat{\boldsymbol{\theta}} - \mathbf{\acute{\theta}}) + o(1).$$

The result (13.82) now follows directly on premultiplication by $(n^{-1}\hat{\boldsymbol{G}}^{\mathsf{T}}\hat{\boldsymbol{G}})^{-1}$.

A second property of artificial regressions is the one that permits their use in the calculation of LM statistics. When an artificial regression that satisfies this property is evaluated at a root-n consistent $\acute{\boldsymbol{\theta}}$, n times the uncentered R^2 calculated from it is asymptotically equal to

$$\frac{1}{n} \hat{\boldsymbol{g}}^{\mathsf{T}} \mathbf{J}_0^{-1} \hat{\boldsymbol{g}}.$$

This result is very easy to prove for the OPG regression. The R^2 is the ratio of the explained sum of squares (ESS) to the total sum of squares (TSS), and so nR^2 is the ratio ESS/(TSS/n). We saw that TSS/n was equal to 1. This means that nR^2 is just the explained sum of squares:

$$nR^{2} = \boldsymbol{\iota}^{\mathsf{T}} \dot{\boldsymbol{G}} (\dot{\boldsymbol{G}}^{\mathsf{T}} \dot{\boldsymbol{G}})^{-1} \dot{\boldsymbol{G}}^{\mathsf{T}} \boldsymbol{\iota} = \frac{1}{n} \dot{\boldsymbol{g}}^{\mathsf{T}} (n^{-1} \dot{\boldsymbol{G}}^{\mathsf{T}} \dot{\boldsymbol{G}})^{-1} \dot{\boldsymbol{g}}.$$
(13.85)

This completes the proof, since $n^{-1} \acute{\boldsymbol{G}}^{\top} \acute{\boldsymbol{G}} \to \mathfrak{I}_0$.