

Figure 2.3 A regress and y projected onto a nonlinear manifold

also with $S^*(\bar{X})$. However, in this case it is evident that \hat{X} corresponds to a global minimum, X'' to a local minimum, and X' to a local maximum of $SSR(\beta)$. Thus we see once again that a point which satisfies the first-order conditions does not necessarily yield NLS estimates.

It should be clear from these figures that the amount of nonlinearity in the regression function $x(\beta)$ is very important. When $x(\beta)$ is almost linear, nonlinear least squares is very similar to ordinary least squares. When $x(\beta)$ is very nonlinear, however, all sorts of strange things can happen. Figure 2.4 only hints at these, since there are many different ways for multiple values of β to satisfy the first-order conditions (2.05) when \mathcal{X} is a high-dimensional manifold.

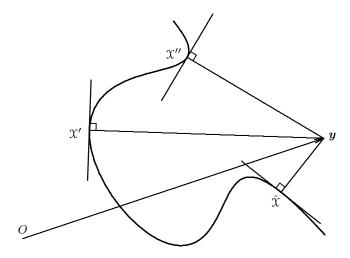


Figure 2.4 A highly nonlinear manifold