same answer, if it is feasible to calculate $\mathcal{I}(\theta)$ at all, although one approach may be easier than the other in any given situation.

For the nonlinear regression model (8.79), the parameter vector $\boldsymbol{\theta}$ is the vector $[\boldsymbol{\beta} : \sigma]$. We now calculate the limiting information matrix $\mathfrak{I}(\boldsymbol{\beta}, \sigma)$ for this model using the second method, based on the CG matrix, which requires only first derivatives. It is a good exercise to repeat the derivation using the Hessian, which requires second derivatives, and verify that it yields the same results. The first derivative of $\ell_t(y_t, \boldsymbol{\beta}, \sigma)$ with respect to β_i is

$$\frac{\partial \ell_t}{\partial \beta_i} = \frac{1}{\sigma^2} (y_t - x_t(\boldsymbol{\beta})) X_{ti}(\boldsymbol{\beta}) = \frac{1}{\sigma^2} e_t(\boldsymbol{\beta}) X_{ti}(\boldsymbol{\beta}), \tag{8.83}$$

where $e_t(\boldsymbol{\beta}) \equiv y_t - x_t(\boldsymbol{\beta})$ and, as usual, $X_{ti}(\boldsymbol{\beta}) \equiv \partial x_t(\boldsymbol{\beta})/\partial \beta_i$. The first derivative of $\ell_t(y_t, \boldsymbol{\beta}, \sigma)$ with respect to σ is

$$\frac{\partial \ell_t}{\partial \sigma} = -\frac{1}{\sigma} + \frac{\left(y_t - x_t(\boldsymbol{\beta})\right)^2}{\sigma^3} = -\frac{1}{\sigma} + \frac{e_t^2(\boldsymbol{\beta})}{\sigma^3}.$$
 (8.84)

Expressions (8.83) and (8.84) are all that we need to calculate the information matrix using the CG matrix. The column of that matrix which corresponds to σ will have typical element (8.84), while the remaining k columns, which correspond to the β_i 's, will have typical element (8.83).

The element of $\mathfrak{I}(\boldsymbol{\beta}, \sigma)$ corresponding to β_i and β_i is

$$\mathfrak{I}(\beta_i, \beta_j) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=1}^n \frac{e_t^2(\boldsymbol{\beta})}{\sigma^4} X_{ti}(\boldsymbol{\beta}) X_{tj}(\boldsymbol{\beta}) \right).$$

Since $e_t^2(\beta)$ has expectation σ^2 under the DGP characterized by (β, σ) and is independent of $X(\beta)$, we can replace it by σ^2 here to yield

$$\Im(\beta_i, \beta_j) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=1}^n \frac{1}{\sigma^2} X_{ti}(\boldsymbol{\beta}) X_{tj}(\boldsymbol{\beta}) \right).$$

Thus we see that the whole (β, β) block of the limiting information matrix is

$$\frac{1}{\sigma^2} \underset{n \to \infty}{\text{plim}} \left(\frac{1}{n} \boldsymbol{X}^{\top} (\boldsymbol{\beta}) \boldsymbol{X} (\boldsymbol{\beta}) \right). \tag{8.85}$$

The element of $\mathfrak{I}(\boldsymbol{\beta}, \sigma)$ corresponding to σ is

$$\Im(\sigma,\sigma) = \underset{n\to\infty}{\text{plim}} \left(\frac{1}{n} \sum_{t=1}^{n} \left(\frac{1}{\sigma^2} + \frac{e_t^4(\beta)}{\sigma^6} - \frac{2e_t^2(\beta)}{\sigma^4} \right) \right) \\
= \frac{1}{n} \left(\frac{n}{\sigma^2} + \frac{3n\sigma^4}{\sigma^6} - \frac{2n\sigma^2}{\sigma^4} \right) \\
= \frac{2}{\sigma^2}.$$
(8.86)