Solution to Exercise 9.4

*9.4 For the model (9.01) and a specific choice of the $l \times k$ matrix J, show that minimizing the quadratic form (9.12) with weighting matrix $\Lambda = JJ^{\top}$ gives the same estimator as solving the moment conditions (9.05) with the given J. Assuming that these moment conditions have a unique solution for β , show that the matrix JJ^{\top} is of rank k, and hence positive semidefinite without being positive definite.

Construct a symmetric, positive definite, $l \times l$ weighting matrix $\boldsymbol{\Lambda}$ such that minimizing (9.12) with this $\boldsymbol{\Lambda}$ leads once more to the same estimator as that given by solving conditions (9.05). It is convenient to take $\boldsymbol{\Lambda}$ in the form $\boldsymbol{J}\boldsymbol{J}^{\top} + \boldsymbol{N}\boldsymbol{N}^{\top}$. In the construction of \boldsymbol{N} , it may be useful to partition \boldsymbol{W} as $[\boldsymbol{W}_1 \quad \boldsymbol{W}_2]$, where the $n \times k$ matrix \boldsymbol{W}_1 is such that $\boldsymbol{W}_1^{\top}\boldsymbol{X}$ is nonsingular.

With $\Lambda = JJ^{\top}$, minimizing (9.12) yields first-order conditions which, ignoring a factor of -2, may be expressed as

$$\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{J} \boldsymbol{J}^{\top} \boldsymbol{W}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}) = \boldsymbol{0}.$$
 (S9.04)

The matrix $\mathbf{X}^{\top} \mathbf{W} \mathbf{J}$ is of dimension $k \times k$, and it must be nonsingular if the k equations (S9.04) are to have a unique solution. This solution is unchanged if the equations are premultiplied by the inverse of $\mathbf{X}^{\top} \mathbf{W} \mathbf{J}$. This premultiplication gives the moment conditions (9.05), as desired.

The matrix J, being of dimension $l \times k$, has rank at most k. In fact, it must have full column rank of k if equations (S9.04) have a unique solution. This implies that the rank of JJ^{\top} is also equal to k. Any matrix of the form JJ^{\top} is positive semidefinite, but, since k < l, it is in this case singular, and so not positive definite.

Suppose now that we can find a nonzero l-vector n such that

$$\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{n} = \boldsymbol{0}. \tag{S9.05}$$

Then

$$\boldsymbol{X}^\top \boldsymbol{W}(\boldsymbol{J}\boldsymbol{J}^\top + \boldsymbol{n}\boldsymbol{n}^\top) = \boldsymbol{X}^\top \boldsymbol{W}\boldsymbol{J}\boldsymbol{J}^\top,$$

from which it follows that setting $\Lambda = JJ^{\top} + nn^{\top}$ leaves the first-order conditions (S9.04) unchanged. If such an n can be found, it can be seen that it is necessarily linearly independent of the k columns of J. Suppose, on the contrary, that there exists a nonzero k-vector γ such that $n = J\gamma$. Then (S9.05) becomes $X^{\top}WJ\gamma = 0$. But the existence of such a nonzero γ contradicts the nonsingularity of $X^{\top}WJ$. Thus n, if it exists, is linearly independent of the columns of J. This in turn implies that $JJ^{\top} + nn^{\top}$ is of rank k + 1.

Copyright © 2003, Russell Davidson and James G. MacKinnon

In fact, there exists an (l - k)-dimensional subspace of \mathbb{R}^l , all the vectors in which are annihilated by premultiplying by the $k \times l$ matrix $\mathbf{X}^{\top} \mathbf{W}$. This space is called the **nullspace** of $\mathbf{X}^{\top} \mathbf{W}$, and it can be constructed as follows. Let \mathbf{W} be partitioned as $[\mathbf{W}_1 \ \mathbf{W}_2]$, where the $n \times k$ matrix \mathbf{W}_1 is such that $\mathbf{W}_1^{\top} \mathbf{X}$ is nonsingular. Such a \mathbf{W}_1 can always be found if the rank of $\mathbf{X}^{\top} \mathbf{W}$ is k, as it must be for $\mathbf{X}^{\top} \mathbf{W} \mathbf{J}$ to be nonsingular. Then consider an $l \times (l - k)$ matrix \mathbf{N} , defined as follows:

$$oldsymbol{N} = egin{bmatrix} -(oldsymbol{X}^{ op}oldsymbol{W}_1)^{-1}oldsymbol{X}^{ op}oldsymbol{W}_2 \ \mathbf{I}_{l-k} \end{bmatrix}.$$

The lower block, which is an $(l - k) \times (l - k)$ identity matrix, ensures that N is of rank l - k. It is easy to verify that $X^{\top}WN = O$. This implies that each column of N is linearly independent of those of J, and so the $l \times l$ matrix $[J \ N]$ has full column rank of l. Thus, if we set $\Lambda = JJ^{\top} + NN^{\top}$, it follows that Λ is symmetric and positive definite. Further, minimization of (9.12) with this choice of Λ leads to the first-order conditions (S9.04).