Solution to Exercise 7.13

*7.13 Consider testing for first-order serial correlation of the error terms in the regression model

$$\boldsymbol{y} = \beta \boldsymbol{y}_1 + \boldsymbol{u}, \quad |\beta| < 1, \tag{7.97}$$

where y_1 is the vector with typical element y_{t-1} , by use of the statistics $t_{\rm GNR}$ and $t_{\rm SR}$ defined in (7.51) and (7.52), respectively. Show first that the vector denoted as $M_X \tilde{u}_1$ in (7.51) and (7.52) is equal to $-\beta M_X y_2$, where y_2 is the vector with typical element y_{t-2} , and $\tilde{\beta}$ is the OLS estimate of β from (7.97). Then show that, as $n \to \infty$, t_{GNR} tends to the random variable $\tau \equiv \sigma_u^{-2} \operatorname{plim} n^{-1/2} (\beta y_1 - y_2)^{\top} u$, whereas t_{SR} tends to the same random variable times β . Show finally that t_{GNR} , but not t_{SR} , provides an asymptotically correct test, by showing that the random variable τ is asymptotically distributed as N(0, 1).

For the model (7.97), $\tilde{\boldsymbol{u}}_1 = \boldsymbol{y}_1 - \tilde{\beta} \boldsymbol{y}_2$. Since the projection matrix $\boldsymbol{M}_{\boldsymbol{X}}$ is equal to $\mathbf{I} - y_1(y_1^{\top}y_1)^{-1}y_1^{\top}$ in this case, it annihilates y_1 . Therefore,

$$\boldsymbol{M}_{\boldsymbol{X}}\tilde{\boldsymbol{u}}_1 = \boldsymbol{M}_{\boldsymbol{X}}\boldsymbol{y}_1 - \boldsymbol{M}_{\boldsymbol{X}}\tilde{\boldsymbol{\beta}}\boldsymbol{y}_2 = -\tilde{\boldsymbol{\beta}}\boldsymbol{M}_{\boldsymbol{X}}\boldsymbol{y}_2, \qquad (S7.16)$$

which is the first result that was to be proved.

The numerator of both statistics is

$$n^{-1/2} \tilde{\boldsymbol{u}}^{\mathsf{T}} \boldsymbol{M}_{\boldsymbol{X}} \tilde{\boldsymbol{u}}_1 = -n^{-1/2} \tilde{\beta} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M}_{\boldsymbol{X}} \boldsymbol{y}_2, \qquad (S7.17)$$

where we have used (S7.16) and the standard result that $\tilde{u} = M_X u$. If we substitute $\mathbf{I} - \boldsymbol{y}_1(\boldsymbol{y}_1^\top \boldsymbol{y}_1)^{-1} \boldsymbol{y}_1$ for $M_{\boldsymbol{X}}$ in (S7.17), the right-hand side becomes

$$-n^{-1/2}\tilde{\boldsymbol{\beta}}\big(\boldsymbol{u}^{\mathsf{T}}\boldsymbol{y}_{2}-\boldsymbol{u}^{\mathsf{T}}\boldsymbol{y}_{1}(\boldsymbol{y}_{1}^{\mathsf{T}}\boldsymbol{y}_{1})^{-1}\boldsymbol{y}_{1}^{\mathsf{T}}\boldsymbol{y}_{2}\big).$$

Because $\tilde{\beta}$ and $(\boldsymbol{y}_1^{\top}\boldsymbol{y}_1)^{-1}\boldsymbol{y}_1^{\top}\boldsymbol{y}_2$ both tend to β as $n \to \infty$, the probability limit of this expression is the random variable

$$\lim_{n \to \infty} n^{-1/2} \beta \boldsymbol{u}^{\mathsf{T}} (\beta \boldsymbol{y}_1 - \boldsymbol{y}_2).$$
 (S7.18)

The denominator of $t_{\rm GNR}$ is

$$s(n^{-1}\tilde{\boldsymbol{u}}_1^{\top}\boldsymbol{M}_{\boldsymbol{X}}\tilde{\boldsymbol{u}}_1)^{1/2}.$$

The first factor evidently tends to σ_u under the null hypothesis, since \tilde{u}_1 has no explanatory power for \tilde{u} , asymptotically. The second factor is the square root of

$$n^{-1}\tilde{\boldsymbol{u}}_1^{\top}\boldsymbol{M}_{\boldsymbol{X}}\tilde{\boldsymbol{u}}_1 = n^{-1}\beta^2 \boldsymbol{y}_2^{\top}\boldsymbol{M}_{\boldsymbol{X}}\boldsymbol{y}_2,$$

Copyright © 2003, Russell Davidson and James G. MacKinnon

where the equality follows from (S7.16). By essentially the same argument as the one that led to (S7.18), this is asymptotically equal to

$$n^{-1}\beta^2 \boldsymbol{y}_2^\top \boldsymbol{y}_2 - n^{-1}\beta^4 \boldsymbol{y}_1^\top \boldsymbol{y}_1.$$
 (S7.19)

Using the fact that y_t has variance $\sigma_u^2/(1-\beta^2)$, it is easy to see that the limit in probability of both $n^{-1}y_1^{\top}y_1$ and $n^{-1}y_2^{\top}y_2$ is $\sigma_u^2/(1-\beta^2)$. Therefore, expression (S7.19) is asymptotically equal to

$$\frac{\sigma_u^2}{1-\beta^2}(\beta^2-\beta^4) = \frac{\sigma_u^2\beta^2(1-\beta^2)}{1-\beta^2} = \beta^2\sigma_u^2.$$
 (S7.20)

Thus the denominator of t_{GNR} is asymptotically equal to σ_u times the square root of (S7.20), or $\beta \sigma_u^2$. Transposing (S7.18), which is of course a scalar, and dividing it by this denominator yields the desired result that

$$\lim_{n \to \infty} t_{\text{GNR}} \equiv \tau = \sigma_u^{-2} \operatorname{plim} n^{-1/2} (\beta \boldsymbol{y}_1 - \boldsymbol{y}_2)^{\mathsf{T}} \boldsymbol{u}.$$
(S7.21)

The analysis for $t_{\rm SR}$ is similar to, but simpler than, the one for $t_{\rm GNR}$. Both statistics have the same numerator, which is asymptotically equal to (S7.18). The first factor in the denominator of $t_{\rm SR}$ is \dot{s} , which evidently tends to σ_u under the null hypothesis, and the second factor is $(n^{-1}\tilde{u}_1^{\top}\tilde{u}_1)^{1/2}$. Since n^{-1} times the sum of squares of the residuals lagged once must be asymptotically the same as n^{-1} times the sum of squared residuals, this second factor clearly has a probability limit of

$$\lim_{n \to \infty} (n^{-1} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{M}_{\boldsymbol{X}} \boldsymbol{u})^{1/2} = \sigma_u$$

under the null hypothesis. Therefore, the denominator of $t_{\rm SR}$ is asymptotically equal to $1/\beta$ times the denominator of $t_{\rm GNR}$, and we find that

$$\lim_{n \to \infty} t_{\rm SR} = \sigma_u^{-2} \operatorname{plim} n^{-1/2} \beta (\beta \boldsymbol{y}_1 - \boldsymbol{y}_2)^{\mathsf{T}} \boldsymbol{u},$$

which was the result to be proved.

In order to show that t_{GNR} is asymptotically distributed as N(0, 1) under the null hypothesis, we must show that τ has mean 0 and variance 1 and that it is asymptotically normally distributed. That it has mean 0 follows immediately from the fact that, under the null hypothesis, u_t is uncorrelated with y_{t-1} and y_{t-2} . That it is asymptotically normally distributed follows from the fact that we can apply a central limit theorem to both of the quantities

$$n^{-1/2} \sum_{t=2}^{n} \beta u_t y_{t-1}$$
 and $n^{-1/2} \sum_{t=3}^{n} u_t y_{t-2}$, (S7.22)

Copyright © 2003, Russell Davidson and James G. MacKinnon

since the difference between these quantities, when divided by σ_u^2 , is asymptotically equal to τ .

It remains to show that the variance of τ is 1. Since the factors of $n^{-1/2}$ offset the fact that both terms in (S7.22) are summations, it is clear that the variance of τ is $1/\sigma_u^4$ times

$$\operatorname{Var}(\beta u_t y_{t-1} - u_t y_{t-2}) = \operatorname{E}(\beta^2 u_t^2 y_{t-1}^2 - 2\beta u_t^2 y_{t-1} y_{t-2} + u_t^2 y_{t-2}^2). \quad (S7.23)$$

Because u_t is independent of y_{t-1} ,

$$\mathbf{E}(u_t^2 y_{t-1}^2) = \sigma_u^2 \mathbf{E}(y_{t-1}^2) = \sigma_u^2 \frac{\sigma_u^2}{1 - \beta^2} = \frac{\sigma_u^4}{1 - \beta^2}$$

Similarly, $\mathbf{E}(u_t^2 y_{t-2}^2) = \sigma_u^4/(1-\beta^2)$, and

$$E(u_t^2 y_{t-1} y_{t-2}) = \sigma_u^2 E(y_{t-1} y_{t-2}) = \sigma_u^2 \frac{\beta \sigma_u^2}{1 - \beta^2} = \frac{\beta \sigma_u^4}{1 - \beta^2}.$$

Thus we find that (S7.23) equals

$$\begin{aligned} \frac{\beta^2 \sigma_u^4}{1 - \beta^2} - 2 \frac{\beta^2 \sigma_u^4}{1 - \beta^2} + \frac{\sigma_u^4}{1 - \beta^2} &= \frac{\sigma_u^4}{1 - \beta^2} - \frac{\beta^2 \sigma_u^4}{1 - \beta^2} \\ &= \frac{(1 - \beta^2) \sigma_u^4}{1 - \beta^2} = \sigma_u^4. \end{aligned}$$

Therefore, the variance of τ itself is just 1, and we conclude that $\tau \sim N(0, 1)$.

Because $t_{\rm SR}$ is asymptotically equal to β times $t_{\rm GNR}$, it must be asymptotically distributed as N(0, β^2). Since $|\beta| < 1$, the asymptotic variance of $t_{\rm SR}$ is always less than that of $t_{\rm GNR}$.