Solution to Exercise 4.8

4.8 Consider the linear regression model \(y = X\beta + u \), where there are \(n \) observations and \(k \) regressors. Suppose that this model is potentially subject to \(r \) restrictions which can be written as \(R\beta = r \), where \(R \) is an \(r \times k \) matrix and \(r \) is an \(r \)-vector. Rewrite the model so that the restrictions become \(r \) zero restrictions.

Since there are (in general) fewer restrictions than there are parameters, we must partition \(R \) and \(\beta \) so that we can solve for some of the parameters in terms of the others. We therefore begin by rearranging the columns of \(X \) so that the restrictions can be written as

\[
R_1\beta_1 + R_2\beta_2 = r, \tag{S4.13}
\]

where \(R \equiv [R_1 \ R_2] \) and \(\beta \equiv [\beta_1 : \beta_2] \), \(R_1 \) being an \(r \times (k - r) \) matrix and \(R_2 \) being a nonsingular \(r \times r \) matrix. It must be possible to do this if the restrictions are in fact distinct. We also partition \(X \) as \([X_1 \ X_2] \), conformably with the partition of \(\beta \).

Solving equations (S4.13) for \(\beta_2 \) yields

\[
\beta_2 = R_2^{-1}r - R_2^{-1}R_1\beta_1.
\]

Thus the original regression, with the restrictions imposed, can be written as

\[
y = X_1\beta_1 + X_2(R_2^{-1}r - R_2^{-1}R_1\beta_1) + u,
\]

This is equivalent to

\[
y - X_2R_2^{-1}r = (X_1 - X_2R_2^{-1}R_1)\beta_1 + u. \tag{S4.14}
\]

This is a restricted version of the original regression. To obtain a regression equivalent to the original, we have to add back in \(r \) regressors that, together with \(Z_1 \equiv X_1 - X_2R_2^{-1}R_1 \), span the same space as \(X \). Although there is an infinite number of ways to do this, the easiest way is to use the \(r \) columns of \(X_2 \) as the additional regressors. To see that this works, note that, for arbitrary \(\beta_1 \) and \(\beta_2 \),

\[
X_1\beta_1 + X_2\beta_2 = Z_1\beta_1 + X_2(\beta_2 + R_2^{-1}R_1\beta_1),
\]

from which it follows that \(s(X_1, X_2) = s(Z_1, X_2) \). Thus the regression

\[
y - X_2R_2^{-1}r = Z_1\gamma_1 + X_2\gamma_2 + u. \tag{S4.15}
\]

is equivalent to the original regression, with \(\beta_1 = \gamma_1 \). In addition, the restrictions that \(\gamma_2 = \mathbf{0} \) in (S4.15) are equivalent to the restrictions that \(R\beta = r \) in the original model.