Solution to Exercise 4.8

*4.8 Consider the linear regression model $y = X\beta + u$, where there are *n* observations and *k* regressors. Suppose that this model is potentially subject to *r* restrictions which can be written as $R\beta = r$, where *R* is an $r \times k$ matrix and *r* is an *r*-vector. Rewrite the model so that the restrictions become *r* zero restrictions.

Since there are (in general) fewer restrictions than there are parameters, we must partition \mathbf{R} and $\boldsymbol{\beta}$ so that we can solve for some of the parameters in terms of the others. We therefore begin by rearranging the columns of \mathbf{X} so that the restrictions can be written as

$$\boldsymbol{R}_1\boldsymbol{\beta}_1 + \boldsymbol{R}_2\boldsymbol{\beta}_2 = \boldsymbol{r},\tag{S4.13}$$

where $\mathbf{R} \equiv [\mathbf{R}_1 \ \mathbf{R}_2]$ and $\boldsymbol{\beta} \equiv [\boldsymbol{\beta}_1 \vdots \boldsymbol{\beta}_2]$, \mathbf{R}_1 being an $r \times (k-r)$ matrix and \mathbf{R}_2 being a nonsingular $r \times r$ matrix. It must be possible to do this if the restrictions are in fact distinct. We also partition \mathbf{X} as $[\mathbf{X}_1 \ \mathbf{X}_2]$, conformably with the partition of $\boldsymbol{\beta}$.

Solving equations (S4.13) for β_2 yields

$$\boldsymbol{eta}_2 = \boldsymbol{R}_2^{-1} \boldsymbol{r} - \boldsymbol{R}_2^{-1} \boldsymbol{R}_1 \boldsymbol{eta}_1.$$

Thus the original regression, with the restrictions imposed, can be written as

$$y = X_1 \beta_1 + X_2 (R_2^{-1}r - R_2^{-1}R_1\beta_1) + u,$$

This is equivalent to

$$y - X_2 R_2^{-1} r = (X_1 - X_2 R_2^{-1} R_1) \beta_1 + u.$$
 (S4.14)

This is a restricted version of the original regression. To obtain a regression equivalent to the original, we have to add back in r regressors that, together with $Z_1 \equiv X_1 - X_2 R_2^{-1} R_1$, span the same space as X. Although there is an infinite number of ways to do this, the easiest way is to use the r columns of X_2 as the additional regressors. To see that this works, note that, for arbitrary β_1 and β_2 ,

$$X_1\beta_1 + X_2\beta_2 = Z_1\beta_1 + X_2(\beta_2 + R_2^{-1}R_1\beta_1),$$

from which it follows that $S(X_1, X_2) = S(Z_1, X_2)$. Thus the regression

$$y - X_2 R_2^{-1} r = Z_1 \gamma_1 + X_2 \gamma_2 + u.$$
 (S4.15)

is equivalent to the original regression, with $\beta_1 = \gamma_1$. In addition, the restrictions that $\gamma_2 = 0$ in (S4.15) are equivalent to the restrictions that $R\beta = r$ in the original model.

Copyright © 2003, Russell Davidson and James G. MacKinnon