Solution to Exercise 4.15

*4.15 *P* values for two-tailed tests based on statistics that have asymmetric distributions are not calculated as in Section 4.2. Let the CDF of the statistic τ be denoted as *F*, where $F(-x) \neq 1 - F(x)$ for general *x*. Suppose that, for any level α , the critical values c_{α}^{-} and c_{α}^{+} are defined, analogously to (4.05), by the equations

$$F(c_{\alpha}^{-}) = \alpha/2$$
 and $F(c_{\alpha}^{+}) = 1 - \alpha/2$.

Show that the marginal significance level associated with a realized statistic $\hat{\tau}$ is $2\min(F(\hat{\tau}), 1 - F(\hat{\tau}))$.

The realized statistic $\hat{\tau}$ is at the margin of rejection for a given level if it is equal to one or other of the critical values for that level. Thus the marginal significance level, which is the *P* value corresponding to $\hat{\tau}$, must satisfy one of the two equations

$$F(\hat{\tau}) = \alpha/2$$
 or $F(\hat{\tau}) = 1 - \alpha/2$,

for which the solutions are $\alpha = 2F(\hat{\tau})$ and $\alpha = 2(1 - F(\hat{\tau}))$. If $F(\hat{\tau})$ is greater than one half, then $2F(\hat{\tau}) > 1$, and $2(1 - F(\hat{\tau})) < 1$. On the other hand, if $F(\hat{\tau})$ is less than one half, it is the other way around. In either case, the solution we want is the lesser of the two, as we were required to show.