Solution to Exercise 15.25

15.25 For a given choice of bandwidth, the expectation of the estimate \(\hat{f}_h(x) \) of (15.61) is \(h^{-1} \) times the expectation of the random variable \(k((x - X)/h) \), where \(X \) denotes the random variable of which the \(x_t \) are IID realizations. Assume that \(k \) is symmetric about the origin. Show that the bias of \(\hat{f}_h(x) \) is independent of the sample size \(n \) and roughly proportional to \(h^2 \) for small \(h \). More formally, this means that the bias is \(O(h^2) \) as \(h \to 0 \).

Show also that the variance of \(\hat{f}_h(x) \) is of order \((nh)^{-1} \) as \(n \to \infty \) and \(h \to 0 \). Why do these facts imply that the bandwidth \(h \) that minimizes the expectation of the squared error of \(\hat{f}_h(x) \) must be of order \(n^{-1/5} \) as \(n \to \infty \)?

The expectation of the kernel density estimator (15.61) is

\[
E(\hat{f}_h(x)) = h^{-1} E\left(k\left(\frac{(x - X)}{h}\right)\right)
= h^{-1} \int_{-\infty}^{\infty} k((x - X)/h) f(X) dX
= \int_{-\infty}^{\infty} k(W) f(x - hW) dW,
\]

where \(W \equiv (x - X)/h \). A second-order Taylor expansion of \(f(x - hW) \) around the point \(h = 0 \) yields

\[
f(x - hW) = f(x) - hWf'(x) + \frac{1}{2}h^2W^2f''(x) + O(h^3).
\]

Substituting this into (S15.49), we find that \(E(\hat{f}_h(x)) \) is the sum of three integrals and a term of order \(h^3 \). The first integral is

\[
\int_{-\infty}^{\infty} k(W)f(x) dW = f(x) \int_{-\infty}^{\infty} k(W) dW = f(x).
\]

The second integral is the negative of

\[
\int_{-\infty}^{\infty} k(W)hWf'(x) dW = hf'(x) \int_{-\infty}^{\infty} Wk(W) dW = 0,
\]

because the mean of \(W \) is 0. The third integral is

\[
\int_{-\infty}^{\infty} k(W)\frac{1}{2}h^2W^2f''(x) = \frac{1}{2}h^2 f''(x) \int_{-\infty}^{\infty} W^2k(W) dW = \frac{1}{2}h^2 f''(x),
\]

because the variance of \(W \) is 1. Thus we conclude that

\[
E(\hat{f}_h(x)) - f(x) = \frac{1}{2}h^2 f''(x) + O(h^3),
\]

which is evidently \(O(h^2) \).

Copyright © 2003, Russell Davidson and James G. MacKinnon
Because the kernel density estimator (15.61) is an average of \(n \) IID random variables, its variance is \(n^{-1} \) times the common variance of these variables. That is,

\[
\text{Var}(\hat{f}_h(x)) = \frac{1}{nh^2} \text{Var}(k(x - X/h)). \quad (S15.52)
\]

The variance on the right-hand side above can be computed as follows. We have

\[
\text{Var}(k(x - X/h)) = \int_{-\infty}^{\infty} k^2((x - X)/h) f(X) dX - E^2(k(x - X)/h)
\]

\[
= h \int_{-\infty}^{\infty} k^2(W) f(x - hW) dW - E^2(k(x - X)/h). \quad (S15.53)
\]

If we substitute the second-order Taylor expansion (S15.50) into the integral in expression (S15.53), we once again obtain three integrals and a term of order \(h^3 \). The first integral is

\[
\int_{-\infty}^{\infty} k^2(W)f(x)dW = f(x)\int_{-\infty}^{\infty} k^2(W)dW. \quad (S15.54)
\]

The second integral is the negative of

\[
h \int_{-\infty}^{\infty} k^2(W)Wf'(x)dW = hf'(x)\int_{-\infty}^{\infty} Wk^2(W)dW = 0,
\]

because the kernel function \(k(W) \) is symmetric. The third integral is

\[
\int_{-\infty}^{\infty} k^2(W)\frac{1}{2}h^2W^2f''(x)dW = \frac{1}{2}h^2f''(x)\int_{-\infty}^{\infty} W^2k^2(W)dW.
\]

Since \(E(k(x - X/h)) \) is \(h \) times \(E(\hat{f}_h(x)) \), we find from (S15.51) and (S15.53), along with the above results, that

\[
\text{Var}(k(x - X/h)) = hf(x)\int_{-\infty}^{\infty} k^2(W)dW - h^2f^2(x) + O(h^3),
\]

and so, from (S15.52), we see that

\[
\text{Var}(\hat{f}_h(x)) = (nh)^{-1} \left(f(x)\int_{-\infty}^{\infty} k^2(W)dW - O(h) \right). \quad (S15.55)
\]

Since we are considering the limit where \(h \to 0 \), the term above that is \(O(h) \) is asymptotically negligible relative to the other term, which is of order \((nh)^{-1} \), as we wished to show.

The squared error is the variance plus the square of the bias. Therefore, the results (S15.51) and (S15.55) imply that the approximate squared error is
\(O(h^4) + O(n^{-1})O(h^{-1})\). If we differentiate this with respect to \(h\) and set the derivative to 0 to find the optimal value of \(h\), we find that

\[O(n^{-1})O(h^{-2}) + O(h^3) = 0.\]

Multiplying by \(h^2\) and rearranging, this becomes

\[O(n^{-1}) = -O(h^5),\]

from which we conclude that \(h = O(n^{-1/5})\) if it is chosen optimally, as we were required to show.