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Solution to Exercise 15.12

?15.12 Show that the J statistic computed using regression (15.40) is given by

J =
(n− k1 − 1)1/2y>MXPZy

(y>MXy y>PZMXPZy − (y>MXPZy)2)1/2
.

Use this expression to show that the probability limit under hypothesis H1

of n−1 times the square of the denominator is

σ2
0 plim

n→∞
1−
n β0

>X>PZMXPZXβ0,

where β0 and σ2
0 are the true parameters.

The FWL regression that corresponds to regression (15.40) is

MXy = αMXPZy + residuals. (S15.26)

Therefore, the t statistic for α = 0 is

y>MXPZy

s(y>PZMXPZy)1/2
, (S15.27)

where s denotes the standard error of regression for the test regression (15.40).
The square of this standard error is

s2 =
y>MX,PZyy

n− k1 − 1
.

In order to show that the t statistic (S15.27) is equal to the expression for J
given in the exercise, we use the fact that MX,PZy = MX − PMXPZy so as
to rewrite the numerator of s2 as

y>MXy − y>MXPZy(y>PZMXPZy)−1y>PZMXy.

This is just the SSR from OLS estimation of the H1 model minus the ESS
from the FWL regression (S15.26). Then we see that the denominator of the
t statistic (S15.27) is the square root of

(
y>MXy − y>MXPZy(y>PZMXPZy)−1y>PZMXy

)
y>PZMXPZy

divided by n− k1− 1. Since each of the quadratic forms in y here is a scalar,
this expression is equal to

y>MXy y>PZMXPZy − (y>MXPZy)2, (S15.28)
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the square root of which is the denominator of the expression for J given in the
exercise. The factor of the square root of n− k1− 1, which implicitly appears
in the denominator of the denominator of expression (S15.27), together with
the numerator of (S15.27), give the numerator of the expression for J, the
validity of which is therefore proved.

We now calculate the plim of n−1 times expression (S15.28) under H1. In order
to do this, we need to evaluate the probability limits of three expressions. The
easiest of these to deal with is y>MXy. Since MX annihilates Xβ0, the plim
of n−1 times this expression is just

plim
n→∞

1−
n

u>MXu = σ2
0 ,

by standard results from Section 3.6. The next easiest is y>MXPZy. The
plim of n−1 times this expression is

plim
n→∞

1−
n

u>MXPZXβ0 + plim
n→∞

1−
n

u>MXPZu.

The first term here has a plim of 0 whenever u is asymptotically orthogonal
to X and Z. The second term must also have a plim of 0, because, as we saw
in Section 15.3, the numerator is Op(1). Finally, we come to the expression
y>PZMXPZy. The plim of n−1 times this expression is

plim
n→∞

1−
n

β0
>X>PZMXPZXβ0 + plim

n→∞
1−
n

u>PZMXPZu

+ plim
n→∞

1−
n

β0
>X>PZMXPZu + plim

n→∞
1−
n

u>PZMXPZXβ0.
(S15.29)

The first term here requires no further analysis. The third and fourth terms
evidently have plims of 0 whenever u is asymptotically orthogonal to X and Z.
That leaves only the second term, which is equal to

plim
n→∞

1−
n

u>PZu− plim
n→∞

1−
n

u>PZPXPZu. (S15.30)

Consider the first of these two terms. By part 2 of Theorem 4.1, u>PZu is
distributed as χ2(k2) if the error terms are normal. If not, then it is still
asymptotically distributed as χ2(k2). In either case, the expression is Op(1),
and so, because the denominator is n, the first term of (S15.30) is equal to 0.
A very similar argument applies to the second term. This time, there are seven
factors instead of three, and all of them are once again Op(1), for exactly the
same reasons. Thus we see that expression (S15.30) is equal to 0. Therefore,
the only term in expression (S15.29) that is not equal to zero is the first term.

Combining these results, we find that

plim
n→∞

1−
n

(
y>MXy y>PZMXPZy − (y>MXPZy)2

)

= σ2
0 plim

n→∞
1−
n

β0
>X>PZMXPZXβ0,

which is what we set out to show.
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