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Solution to Exercise 14.19

*14.19 Consider the expression n! Z?Zl v$1U2, where vy and v49 are given by the
equations (14.42), with \; < 1, ¢ = 1,2, the inequality being strict in at least
one case. Show that the expectation and variance of this expression both tend
to finite limits as n — oo. For the variance, the easiest way to proceed is to
express the vy; as in (14.42), and to consider only the nonzero contributions
to the second moment.

From equations (14.42), we see that
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Since the vectors e; = [ey1 i eso] are IID(0, X'), the only terms on the right-
hand side of equation (S14.21) with nonzero expectation are those for which
r = s. Then, noting that E(es1e52) = 012, the (1,2) element of the matrix X,
we find that
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The statement of the exercise implies that |A;\2| < 1, with strict inequality.

Thus
t t—1

t—s __ s __ 1- ()‘1)‘2)t
Z()q)\z) = Z()\l)\g) = 1_—)\1)\2

s=1 s=0

The expectation of the right-hand side of equation (S14.21) can therefore be
expressed as
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The sum ;7 (A1 A2)" is convergent when | A1 A2| < 1, and so that sum, divided
by n, tends to 0 as n — oco. The limit of (S14.23) is therefore o12/(1 — A1 \2),
which is finite, as we wished to show.

Since the expectation has a finite limit, we will have shown that the variance
also has a finite limit if we show that the second moment has a finite limit.
The second moment is the expectation of the following sum:
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In order for the expectation of e5,1€5,1€r,2€,2 to be nonzero, we require that
s1 = S9 and 71 = r9, in which case the expectation is 011092, or that s1 = 7
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and so = rg, in which case the expectation is 0%2, or that s;1 = ro and s9 = 711,
in which case the expectation is again .

The above cases all include a special case, for which the expectation is differ-
ent. If all the indices coincide, so that s; = so = r9 = 79, then the expectation
is a fourth moment, the value of which we denote by m,4. The sum of the ex-
pectations of the terms of (S14.24) with s; = sy = ro = ro can be written as
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where for ease of notation we write AyAs = A. In the above expression, the
indices t; and t5 can be interchanged without altering the summand, and we
may then decompose the sum into one for which t; = t5 for all terms, and
another for which t9 < ¢4, so as to obtain
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The first term above can be evaluated in exactly the same way as the right-
hand side of equation (S14.23), with A replaced by A2, Since the sum is divided
by n? rather than n, we see that the limit of the first term as n — oo is 0.
The second term can be rearranged as follows:
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In this last expression, the sums involving powers of A are all convergent as
n — oo, as we saw before. The only divergent sum is Zzzl 1 = n, but even
this is swamped by the factor of n? in the denominator. The limit of the
whole expression as n — oo is therefore 0.

We now consider the terms in which the indices are equal in pairs. For sim-
plicity, we look in detail only at the case with s; = r1 and sy = ra, since
the other two cases are very similar. Further, we do not exclude the terms in
which all four indices are equal, since we have just shown that their contribu-
tion tends to zero. The sum of the expectations of the terms in (S14.24) for
which s1 = r; and sg = rg is
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Since everything is symmetric with respect to the indices 1 and 2, this sum is
just the square of the sum
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As n — oo, this expression tends to o12/(1 — \), which is finite, and so
therefore also its square. This completes the proof.
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