Solution to Exercise 14.18

14.18 Let the $p \times p$ matrix A have q distinct eigenvalues $\lambda_1, \ldots, \lambda_q$, where $q \leq p$. Let the p-vectors ξ_i, $i = 1, \ldots, q$, be corresponding eigenvectors, so that $A\xi_i = \lambda_i \xi_i$. Prove that the ξ_i are linearly independent.

Suppose the contrary, so that there exist nonzero scalars α_i, $i = 1, \ldots, q$, such that $\sum_{i=1}^q \alpha_i \xi_i = 0$. We can suppose without loss of generality that all of the α_i are nonzero, since, if not, we can redefine the problem with a smaller value of q. We can also suppose that $q > 1$, since otherwise we would just have an eigenvector equal to zero, contrary to the definition of an eigenvector. Let Ξ be the $p \times q$ matrix of which the columns are the ξ_i, and let α be a q-vector with typical element α_i. Then we have that $\Xi \alpha = 0$.

If we premultiply this relation by A, we obtain

$$0 = A\Xi \alpha = \Xi \Lambda \alpha,$$

(S14.18)

where the $q \times q$ matrix $A \equiv \text{diag}\{\lambda_i\}$. Clearly, $A\alpha$ is a q-vector with typical element $\lambda_i \alpha_i$, and so (S14.18) shows that there is a second linear combination of the ξ_i equal to zero. Since the λ_i are distinct, $A\alpha$ is not parallel to α, and so this second linear combination is linearly independent of the first. If we premultiply (S14.18) once more by A, we see that $\Xi A^2 \alpha = 0$, and, repeating the operation, we see that $\Xi A^i \alpha = 0$ for $i = 0, 1, \ldots, q - 1$.

The q relations of linear dependence can thus be written as

$$\Xi \begin{bmatrix} \alpha_1 & \alpha_1 \lambda_1 & \ldots & \alpha_1 \lambda_{q-1} \\ \alpha_2 & \alpha_2 \lambda_2 & \ldots & \alpha_2 \lambda_{q-1} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_q & \alpha_q \lambda_q & \ldots & \alpha_q \lambda_{q-1} \end{bmatrix} \equiv \Xi B = 0.$$

(S14.19)

We will show in a moment that the matrix B must be nonsingular. But this implies that $\Xi = O$, which is false because the columns of the matrix Ξ are the nonzero eigenvectors of A. Thus the ξ_i are not linearly dependent, as we wished to show.

Note that B is the product of the $q \times q$ diagonal matrix with typical diagonal element α_i and the matrix

$$\begin{bmatrix} 1 & \lambda_1 & \ldots & \lambda_{q-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_q & \ldots & \lambda_{q-1} \end{bmatrix}.$$

(S14.19)

Thus the determinant of B is $\alpha_1 \alpha_2 \cdots \alpha_q$, the determinant of the diagonal matrix, times the determinant of (S14.19). Since the α_i are all nonzero, the
determinant of B vanishes if and only if the determinant of (S14.19) vanishes, that is, if and only if (S14.19) is singular. Suppose that this is the case. Then there exists a q-vector γ, with typical element γ_i, $i = 0, \ldots, q - 1$, such that

$$
\begin{bmatrix}
1 & \lambda_1 & \cdots & \lambda_1^{q-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \lambda_q & \cdots & \lambda_q^{q-1}
\end{bmatrix}
\begin{bmatrix}
\gamma_0 \\
\vdots \\
\gamma_{q-1}
\end{bmatrix}
= 0.
$$

(S14.20)

This matrix equation can be written as

$$
\gamma_0 + \gamma_1 \lambda_i + \cdots + \gamma_{q-1} \lambda_i^{q-1} = 0, \quad i = 1, \ldots, q.
$$

This implies that the polynomial equation

$$
\gamma_0 + \gamma_1 z + \cdots + \gamma_{q-1} z^{q-1} = 0, \quad i = 1, \ldots, q,
$$

of degree $q - 1$, has q distinct roots, $\lambda_1, \ldots \lambda_q$. But a polynomial equation of degree $q - 1$ can have at most $q - 1$ distinct roots, by the fundamental theorem of algebra. Thus equation (S14.20) cannot be true. From this we conclude that the matrix (S14.19) is nonsingular, as is B, and the result is proved.