Solution to Exercise 14.14

*14.14 By using arguments similar to those leading to the result (14.30) for the z_{nc} statistic, demonstrate the result (14.31) for the τ_{nc} statistic.

The test statistic τ_{nc} is the t statistic for $\beta - 1 = 0$ in regression (14.15). Using the result of Exercise 4.9, this is $(n-1)^{1/2}$ times the cotangent of the angle between the vector with typical element Δy_t and that with typical element y_{t-1} . Under the null hypothesis, $y_t = \sigma w_t$, where w_t is a standardized random walk. The angle is thus the same as the angle between the vectors with typical elements $\Delta w_t = \varepsilon_t$ and w_{t-1} .

For any two nonzero vectors \boldsymbol{a} and \boldsymbol{b} , the cosine of the angle between them is $\boldsymbol{a}^{\mathsf{T}}\boldsymbol{b}/(\|\boldsymbol{a}\|\|\boldsymbol{b}\|)$. For any angle $\theta \in [0,\pi]$, $\cot \theta = \cos \theta/(1-\cos^2 \theta)^{1/2}$, and so the cotangent of the angle between \boldsymbol{a} and \boldsymbol{b} is

$$\boldsymbol{a}^{\mathsf{T}} \boldsymbol{b} ig(\| \boldsymbol{a} \| \| \boldsymbol{b} \| - (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{b})^2 ig)^{-1/2}.$$

Thus the τ_{nc} statistic can be written as

$$\frac{(n-1)^{1/2} \sum_{t=2}^{n} w_{t-1}\varepsilon_t}{\left(\sum_{t=2}^{n} w_{t-1}^2 \sum_{t=1}^{n} \varepsilon_t^2 - \left(\sum_{t=2}^{n} w_{t-1}\varepsilon_t\right)^2\right)^{1/2}}.$$
 (S14.13)

The plims of most of the sums above were worked out in the text for z_{nc} . The only one not yet considered is the sum of the ε_t^2 . By a law of large numbers,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \varepsilon_t^2 = \mathcal{E}(\varepsilon_t^2) = 1.$$

Thus the first term in the expression of which we compute the square root in (S14.13) is $O_p(n^3)$, that is, the order of $\sum w_{t-1}^2$ plus that of $\sum \varepsilon_t^2$, whereas the second term is $O_p(n^2)$, since $\sum w_{t-1}\varepsilon_t = O_p(n)$. In computing the plim of (S14.13), therefore, we can ignore the second term in the denominator. From (14.27) and (14.29), it is then easy to check that

$$\lim_{n \to \infty} \tau_{nc} = \frac{\frac{1}{2} (W^2(1) - 1)}{\left(\int_0^1 W^2(r) dr \right)^{1/2}},$$

which is equation (14.31).

Copyright © 2003, Russell Davidson and James G. MacKinnon