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Solution to Exercise 13.21

?13.21 Consider the regression model y = Xβ + u, where X is an n× k matrix, in
which the errors follow a GARCH(1, 1) process with conditional variance given
by equation (13.78). Show that the skedastic function σ2

t (β,θ) used in the
loglikelihood contribution `t(β,θ) given in (13.86) can be written explicitly as
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where ut stands for the residual yt−Xtβ, and all unavailable instances of both
u2

t and σ2
t are replaced by the unconditional expectation α0/(1− α1 − δ1).

Then show that the first-order partial derivatives of `t(β,θ) can be written
as follows:
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The conditional variance of a GARCH(1,1) process is a recursive equation
that was given in equation (13.78):
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2
t−1 + δ1σ

2
t−1. (13.78)

If this recursion is written as
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t − δ1σ
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2
t−1,

then it has the same algebraic form as the recursion (7.29) that defines an
AR(1) process. It can thus be solved in the same way. This gives
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Similar results may be found in equations (7.30) and (7.95). By performing
the summation of the first term explicitly and changing the summation index
of the second, we see that this equation can be rewritten as
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It is straightforward to check that the series σ2
t given by this equation does

indeed satisfy the recursion (13.78). If we now replace the unavailable σ2
1 in

equation (S13.28) by α0/(1− α1 − δ1), we obtain equation (13.96), which is
what we set out to do.

It follows directly from expression (13.86) for the contribution `t(β, θ) to the
loglikelihood function that
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In order to establish equations (13.97), we must calculate the derivatives of
ut(β) ≡ yt − Xtβ and σ2

t (β,θ) with respect to the parameters β, α0, α1,
and δ1. It is easy to see that ∂ut/∂β = −Xt and that the partial derivatives
of ut with respect to the other parameters are zero. For σ2

t , we obtain from
equation (13.96) that
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Equations (13.97) follow directly from equations (S13.29) and (S13.30).
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