Solution to Exercise 13.20

***13.20** Use the result of the previous exercise to show that a necessary condition for the existence of the $2r^{\text{th}}$ moment of the ARCH(1) process

$$u_t = \sigma_t \varepsilon_t; \quad \sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2; \quad \varepsilon_t \sim \text{NID}(0, 1)$$

is that $\alpha_1^r \prod_{j=1}^r (2j-1) < 1$.

In the answer to Exercise 13.18, we saw for the case in which r = 2 that the $2r^{\text{th}}$ moment of u_t is equal to the $2r^{\text{th}}$ central moment of ε_t times the expectation of σ_t^{2r} . This is obviously true for any positive r. Thus, using the result proved in the preceding exercise, we need to find $\prod_{j=1}^r (2j-1)$ times $E(\sigma_t^{2r})$. Using the definition of the GARCH(1,1) process, we see that

$$E(\sigma_t^{2r}) = E(\alpha_0 + \alpha_1 u_{t-1}^2)^r.$$
 (S13.26)

The r^{th} power of $\alpha_0 + \alpha_1 u_{t-1}^2$ has r+1 terms, of which the only one that involves u_{t-1}^{2r} is $\alpha_1^r u_{t-1}^{2r}$. Again using the result proved in the previous exercise, the expectation of this term is

$$\alpha_1^r \mathcal{E}(u_{t-1}^{2r}) = \alpha_1^r \mathcal{E}(\sigma_t^{2r}) \prod_{j=1}^r (2j-1).$$

Thus we can write equation (S13.26) as

$$E(\sigma_t^{2r}) = A + \alpha_1^r E(\sigma_t^{2r}) \prod_{j=1}^r (2j-1),$$
 (S13.27)

where A is a rather complicated function of α_0 , α_1 , and the even moments of u_t from 2 through 2r - 2. All of these moments must be positive, by the result of the previous exercise, and so must all of the coefficients on them, because α_0 and α_1 are assumed to be positive. Thus A > 0. Solving equation (S13.27), we find that

$$E(\sigma_t^{2r}) = \frac{A}{1 - \alpha_1^r(\prod_{j=1}^r (2j-1))}$$

If the condition that $\alpha_1^r \prod_{j=1}^r (2j-1) < 1$ is not satisfied, this expectation is apparently negative, which is impossible. Thus this is a necessary condition for the existence of the $2r^{\text{th}}$ moment of u_t .

Copyright © 2003, Russell Davidson and James G. MacKinnon