Econometric Theory and Methods Answers to Starred Exercises 113

Solution to Exercise 12.8

*12.8 Suppose that m independent random variables, z;, each of which is distributed
as N(0, 1), are grouped into an m-vector z. Let * = p + Az, where p is an
m~vector and A is a nonsingular m X m matrix, and let 2 = AA". Show
that the mean of the vector x is p and its covariance matrix is 2. Then show
that the density of x is

@2m) 2|27 P exp(— L (z — p) 27 (z — p)). (12.122)

This extends the result of Exercise 4.5 for the bivariate normal density to the
multivariate normal density. Hints: Remember that the joint density of m
independent random variables is equal to the product of their densities, and
use the result (12.29).

The first result is trivial to prove. Clearly,
E(x)=E(p+ Az) = p+ AE(z) = p.
For the second result, we have
E((x—p)(x—p)") =E(Azz'A"T) = AE(2z")AT
= AIA"= AA" = 0,

as we were required to show.

The third result requires a little bit more work. The density of each of the z;
is the standard normal density,

£l = (2m) 7V exp(~ 327).

Since the z; are independent, the joint density of all of them is just the product
of m of these densities, which is

m

(2m) "™/ % exp (—% Z 212) = (2m)"™/2 exp(—%sz). (S12.10)

=1

Next, we use the result (12.29), which requires that we replace the vector z
in the expression on the right-hand side of equation (S12.10) by

h(z) = A" (z — p)
and then multiply by the determinant of the Jacobian of the transformation,
which is

AT = A =
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We do not need to take the absolute value of the determinant in this case,
because 2, and hence also A and its inverse, are positive definite matrices.
Thus the result of using (12.29) is
“m _ 1 _ _
(2m) "2 102 exp(— (@ — p)(AT) A (& — p)).
This can be rewritten as (12.122) by using the fact that

<A—1)TA—1 — (AAT)—l — Q—l‘

Thus we conclude that the joint density of the vector x is expression (12.122),
as we were required to show.
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