Solution to Exercise 12.3

*12.3 If **B** is positive definite, show that $\mathbf{I} \otimes \mathbf{B}$ is also positive definite, where **I** is an identity matrix of arbitrary dimension. What about $\mathbf{B} \otimes \mathbf{I}$? If **A** is another positive definite matrix, is it the case that $\mathbf{B} \otimes \mathbf{A}$ is positive definite?

Suppose that the matrices \boldsymbol{B} and \mathbf{I} are $g \times g$ and $l \times l$, respectively. In order to show that the matrix $\mathbf{I} \otimes \boldsymbol{B}$ is positive definite, it is convenient to let $\boldsymbol{z}_{\bullet} = [\boldsymbol{z}_1 \vdots \boldsymbol{z}_2 \vdots \cdots \vdots \boldsymbol{z}_l]$, where each of the \boldsymbol{z}_i is an arbitrary g-vector. Then

$$\boldsymbol{z}_{\bullet}^{\top}(\mathbf{I}\otimes\boldsymbol{B})\boldsymbol{z}_{\bullet} = \sum_{i=1}^{l} \boldsymbol{z}_{i}^{\top}\boldsymbol{B}\boldsymbol{z}_{i},$$
 (S12.05)

since $\mathbf{I} \otimes \mathbf{B}$ is just a block-diagonal matrix with l nonzero blocks each equal to \mathbf{B} . Clearly, the right-hand side of equation (S12.05) is positive if at least one element of \mathbf{z}_{\bullet} is nonzero, since it is just a sum of l quadratic forms in the positive definite matrix \mathbf{B} . Therefore, we conclude that $\mathbf{I} \otimes \mathbf{B}$ is positive definite.

To prove the second result, it is convenient to let $\boldsymbol{x}_{\bullet} = [\boldsymbol{x}_1 \vdots \boldsymbol{x}_2 \vdots \cdots \vdots \boldsymbol{x}_g]$, where each of the \boldsymbol{x}_i is an arbitrary *l*-vector. We can also arrange the \boldsymbol{x}_i into an $l \times g$ matrix $\boldsymbol{X} \equiv [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \cdots \boldsymbol{x}_g]$. This allows us to to write

$$\boldsymbol{x}_{\bullet}^{\top}(\boldsymbol{B}\otimes\mathbf{I})\boldsymbol{x}_{\bullet} = \sum_{i=1}^{g}\sum_{j=1}^{g}b_{ij}\boldsymbol{x}_{i}^{\top}\boldsymbol{x}_{j} = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{X}^{\top}\boldsymbol{X}).$$

As in the answer to Exercise 12.1,

$$Tr(\boldsymbol{B}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}) = \sum_{i=1}^{g} \boldsymbol{e}_{i}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{B}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{e}_{i}, \qquad (S12.06)$$

where e_i is the *i*th unit basis vector for E^g . It follows, as was spelled out just below (S12.02) in the answer to Exercise 12.1, that $\text{Tr}(\boldsymbol{B}\boldsymbol{X}^{\top}\boldsymbol{X})$ must be positive unless every element of \boldsymbol{X} is 0, which implies that $\boldsymbol{B} \otimes \mathbf{I}$ is positive definite.

For the third result, we keep the same partitioning of x_{\bullet} and observe that

$$egin{aligned} oldsymbol{x}_{ullet}(oldsymbol{B}\otimesoldsymbol{A})oldsymbol{x}_{ullet}&=\sum_{i=1}^g\sum_{j=1}^gb_{ij}oldsymbol{x}_i^ opoldsymbol{A}oldsymbol{x}_j\ &=\operatorname{Tr}(oldsymbol{B}oldsymbol{X}^ opoldsymbol{A}oldsymbol{X})=\operatorname{Tr}(oldsymbol{C}^ opoldsymbol{X}^ opoldsymbol{A}oldsymbol{X}), \end{aligned}$$

Copyright © 2003, Russell Davidson and James G. MacKinnon

where C is a positive definite matrix such that $CC^{\top} = B$. As in equation (S12.06), we can rewrite the rightmost trace here as

$$\sum_{i=1}^{g} oldsymbol{e}_i^ op oldsymbol{C}^ op oldsymbol{X}^ op oldsymbol{A} oldsymbol{X} oldsymbol{C} oldsymbol{e}_i.$$

This is a sum of g quadratic forms in the positive definite matrix A and the vector XCe_i , and it must be positive unless X is a zero matrix. Thus we conclude that $B \otimes A$ must be positive definite whenever both A and B are positive definite.