Solution to Exercise 12.2

*12.2 Prove the first result of equations (12.08) for an arbitrary $p \times q$ matrix A and an arbitrary $r \times s$ matrix B. Prove the second result for A and B as above, and for C and D arbitrary $q \times t$ and $s \times u$ matrices, respectively. Prove the third result in (12.08) for an arbitrary nonsingular $p \times p$ matrix A and nonsingular $r \times r$ matrix B.

Give details of the interchanges of rows and columns needed to convert $A \otimes B$ into $B \otimes A$, where A is $p \times q$ and B is $r \times s$.

The first result to be shown is that

$$(\boldsymbol{A}\otimes\boldsymbol{B})^{\top}=\boldsymbol{A}^{\top}\otimes\boldsymbol{B}^{\top},$$

where \mathbf{A} is $p \times q$, and \mathbf{B} is $r \times s$. Each element of $\mathbf{A} \otimes \mathbf{B}$ is of the form $a_{ij} b_{kl}$, and this particular element is in row (i-1)r + k of the Kronecker product, and in column (j-1)s + l. This element is thus the element of $(\mathbf{A} \otimes \mathbf{B})^{\top}$ in row (j-1)s + 1 and column (i-1)r + k. Now $a_{ij} = \mathbf{A}_{ji}^{\top}$ and $b_{kl} = \mathbf{B}_{lk}^{\top}$. Thus $a_{ij}b_{lk}$ is in row (j-1)s + l and column (i-1)r + k of $\mathbf{A}^{\top} \otimes \mathbf{B}^{\top}$. This shows that $(\mathbf{A} \otimes \mathbf{B})^{\top}$ and $\mathbf{A}^{\top} \otimes \mathbf{B}^{\top}$ coincide element by element, and therefore as complete matrices.

The second result to be shown is that

$$(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D}) = (\boldsymbol{A}\boldsymbol{C}) \otimes (\boldsymbol{B}\boldsymbol{D}), \qquad (S12.03)$$

for A and B as above, and C and D, respectively, $q \times t$ and $s \times u$. We have that $A \otimes B$ is $pr \times qs$, $C \otimes D$ is $qs \times tu$, AC exists and is $p \times t$, and BD exists and is $r \times u$. Thus $(A \otimes B)(C \otimes D)$ exists and is $pr \times tu$, while $(AC) \otimes (BD)$ is $pr \times tu$. Thus all the dimensions are correct.

Write out the left-hand side of equation (S12.03) explicitly as

$$\begin{bmatrix} a_{11}\boldsymbol{B} & \cdots & a_{1q}\boldsymbol{B} \\ \vdots & \ddots & \vdots \\ a_{p1}\boldsymbol{B} & \cdots & a_{pq}\boldsymbol{B} \end{bmatrix} \begin{bmatrix} c_{11}\boldsymbol{D} & \cdots & c_{1t}\boldsymbol{D} \\ \vdots & \ddots & \vdots \\ c_{q1}\boldsymbol{D} & \cdots & c_{qt}\boldsymbol{D} \end{bmatrix}.$$

The partitioning of both factors is compatible for multiplication, and we see directly that the product can be written as

$$\begin{bmatrix} \sum_{j=1}^{q} a_{1j} c_{j1} B D & \cdots & \sum_{j=1}^{q} a_{1j} c_{jt} B D \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{q} a_{pj} c_{j1} B D & \cdots & \sum_{j=1}^{q} a_{pj} c_{jt} B D \end{bmatrix}.$$
 (S12.04)

But $\sum_{j=1}^{q} a_{ij}c_{jk}$ is element (i, k) of AC, and so it is clear that the right-hand side of equation (S12.04) is just $(AC) \otimes (BD)$.

Copyright © 2003, Russell Davidson and James G. MacKinnon

The third result to be shown is that

$$(\boldsymbol{A}\otimes\boldsymbol{B})^{-1}=\boldsymbol{A}^{-1}\otimes\boldsymbol{B}^{-1},$$

where A is $p \times p$ and B is $r \times r$, both nonsingular. Form the $pr \times pr$ product $(A \otimes B)(A^{-1} \otimes B^{-1})$. By the previous result, this product is

$$AA^{-1} \otimes BB^{-1} = \mathbf{I}_p \otimes \mathbf{I}_r$$
.

If the last expression is written out explicitly, we obtain the partitioned matrix

$$\begin{bmatrix} \mathbf{I}_r & \mathbf{O} & \cdots & \mathbf{O} \\ \mathbf{O} & \mathbf{I}_r & \cdots & \mathbf{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O} & \mathbf{O} & \cdots & \mathbf{I}_r \end{bmatrix},$$

with p rows and columns of blocks. This matrix is manifestly just \mathbf{I}_{pr} , which shows that $A^{-1} \otimes B^{-1}$ is the inverse of $A \otimes B$.

Finally, we can answer the last part of the question. Since $a_{ij}b_{kl}$ is both element ((i-1)r+k, (j-1)s+l) of $A \otimes B$ and element ((k-1)p+i, (l-1)q+j) of $B \otimes A$, in order to go from $A \otimes B$ to $B \otimes A$, we must move row (i-1)r+k of the former to row (k-1)p+i for all i and k within the dimensions, and then move column (j-1)s+l of the former to column (l-1)q+j for all j and l within the dimensions. This prescription is unique, since, as i and k vary, (i-1)r+k varies with no repetitions from 1 to pr, as does (k-1)p+i, with a similar result for the columns. This implies that we have defined a unique permutation of both rows and columns.