Solution to Exercise 12.16

*12.16 The $k \times k$ matrix $X_{\bullet}^{\top}(\Sigma^{-1} \otimes P_W) X_{\bullet}$ given in expression (12.66) is positive semidefinite by construction. Show this property explicitly by expressing the matrix in the form $A^{\top}A$, where A is a matrix with k columns and at least k rows that should depend on a $g \times g$ nonsingular matrix Ψ which satisfies the relation $\Psi\Psi^{\top} = \Sigma^{-1}$.

Show that a positive semidefinite matrix expressed in the form $\mathbf{A}^{\top}\mathbf{A}$ is positive definite if and only if \mathbf{A} has full column rank. In the present case, the matrix \mathbf{A} fails to have full column rank if and only if there exists a k-vector $\boldsymbol{\beta}$, different from zero, such that $\mathbf{A}\boldsymbol{\beta} = \mathbf{0}$. Since $k = \sum_{i=1}^{g} k_i$, we may write the vector $\boldsymbol{\beta}$ as $[\boldsymbol{\beta}_1 \vdots \cdots \vdots \boldsymbol{\beta}_g]$, where $\boldsymbol{\beta}_i$ is a k_i -vector for $i = 1, \ldots, g$. Show that there exists a nonzero $\boldsymbol{\beta}$ such that $\mathbf{A}\boldsymbol{\beta} = \mathbf{0}$ if and only if, for at least one i, there is a nonzero $\boldsymbol{\beta}_i$ such that $\mathbf{P}_{\mathbf{W}}\mathbf{X}_i\boldsymbol{\beta}_i = \mathbf{0}$, that is, if $\mathbf{P}_{\mathbf{W}}\mathbf{X}_i$ does not have full column rank.

Show that, if $P_W X_i$ has full column rank, then there exists a unique solution of the estimating equations (12.60) for the parameters β_i of equation *i*.

If we set $A \equiv (\Psi^{\top} \otimes P_W) X_{\bullet}$, then we see that

$$\begin{split} A^{\mathsf{T}}\!A &= X_{\bullet}^{\mathsf{T}}(\boldsymbol{\Psi} \otimes \boldsymbol{P}_{\boldsymbol{W}})(\boldsymbol{\Psi}^{\mathsf{T}} \otimes \boldsymbol{P}_{\boldsymbol{W}})X_{\bullet} \\ &= X_{\bullet}^{\mathsf{T}}(\boldsymbol{\Psi}\boldsymbol{\Psi}^{\mathsf{T}} \otimes \boldsymbol{P}_{\boldsymbol{W}})X_{\bullet} = X_{\bullet}^{\mathsf{T}}(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{P}_{\boldsymbol{W}})X_{\bullet} \end{split}$$

In these manipulations, we make use of the fact that the orthogonal projection matrix P_{W} is symmetric and idempotent. Since $\Psi^{\top} \otimes P_{W}$ is $gn \times gn$, and X_{\bullet} is $gn \times k$, it follows that A is a $gn \times k$ matrix. The requirement on the number of rows is satisfied because gn > k.

For the second part of the question, the positive semidefinite matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is positive definite if and only if $\boldsymbol{\beta}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\boldsymbol{\beta} = 0$ implies that $\boldsymbol{\beta} = \mathbf{0}$. But $\boldsymbol{\beta}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\boldsymbol{\beta} = \|\mathbf{A}\boldsymbol{\beta}\|^2$, and so the quadratic form is zero if and only if $\|\mathbf{A}\boldsymbol{\beta}\| = 0$, that is, if and only if $\mathbf{A}\boldsymbol{\beta} = \mathbf{0}$. If this last relation implies that $\boldsymbol{\beta} = \mathbf{0}$, then by definition \mathbf{A} has full column rank.

The matrix A can be expressed explicitly as follows:

$$\begin{split} \boldsymbol{A} &= (\boldsymbol{\Psi}^{\top} \otimes \boldsymbol{P}_{\boldsymbol{W}}) \boldsymbol{X}_{\bullet} \\ &= \begin{bmatrix} \psi_{11} \boldsymbol{P}_{\boldsymbol{W}} & \cdots & \psi_{g1} \boldsymbol{P}_{\boldsymbol{W}} \\ \vdots & \ddots & \vdots \\ \psi_{1g} \boldsymbol{P}_{\boldsymbol{W}} & \cdots & \psi_{gg} \boldsymbol{P}_{\boldsymbol{W}} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_{1} & \cdots & \boldsymbol{O} \\ \vdots & \ddots & \vdots \\ \boldsymbol{O} & \cdots & \boldsymbol{X}_{g} \end{bmatrix} \\ &= \begin{bmatrix} \psi_{11} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{1} & \cdots & \psi_{g1} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{g} \\ \vdots & \ddots & \vdots \\ \psi_{1g} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{1} & \cdots & \psi_{gg} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{g} \end{bmatrix}, \end{split}$$

Copyright © 2003, Russell Davidson and James G. MacKinnon

where ψ_{ij} is the ij^{th} element of Ψ . We can postmultiply this by a k-vector β that is partitioned as $[\beta_1 \vdots \cdots \vdots \beta_q]$. The result is

$$\boldsymbol{A}\boldsymbol{\beta} = \begin{bmatrix} \psi_{11}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{1} & \cdots & \psi_{g1}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{g} \\ \vdots & \ddots & \vdots \\ \psi_{1g}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{1} & \cdots & \psi_{gg}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{g} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{g} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{g} \psi_{j1}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{j}\boldsymbol{\beta}_{j} \\ \vdots \\ \sum_{j=1}^{g} \psi_{jg}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}_{j}\boldsymbol{\beta}_{j} \end{bmatrix}.$$

If we stack the $n \times 1$ blocks of the $gn \times 1$ vector $A\beta$ horizontally in an $n \times q$ matrix rather than vertically, we obtain

$$\begin{split} \begin{bmatrix} \sum_{j=1}^{g} \psi_{j1} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{j} \boldsymbol{\beta}_{j} & \cdots & \sum_{j=1}^{g} \psi_{jg} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{j} \boldsymbol{\beta}_{j} \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{1} \boldsymbol{\beta}_{1} & \cdots & \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{g} \boldsymbol{\beta}_{g} \end{bmatrix} \begin{bmatrix} \psi_{11} & \cdots & \psi_{1g} \\ \vdots & \ddots & \vdots \\ \psi_{g1} & \cdots & \psi_{gg} \end{bmatrix} \\ &= \begin{bmatrix} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{1} \boldsymbol{\beta}_{1} & \cdots & \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X}_{g} \boldsymbol{\beta}_{g} \end{bmatrix} \boldsymbol{\Psi}. \end{split}$$

Clearly, the vector $A\beta$ is zero if and only if the matrix in the last line above is zero. But Ψ is a nonsingular $g \times g$ matrix, and so $A\beta$ is zero for arbitrary nonzero β if and only if the entire matrix $[P_W X_1 \beta_1 \cdots P_W X_a \beta_a]$ is zero. But that can only be the case if $P_W X_i \beta_i$ is zero for all $i = 1, \ldots, g$. Consequently, $A\beta$ is zero with a nonzero β if and only if there is at least one i such that $P_W X_i \beta_i = 0$ with nonzero β_i .

We now turn to the third part of the question. If $X_{\bullet}^{\top}(\Sigma^{-1} \otimes P_W)X_{\bullet}$ is nonsingular, then the equations (12.60) have a unique solution for β_{\bullet} , and the result is trivial. The only case that needs further study is therefore the one in which the matrix A does not have full column rank. Suppose then that **A** is of rank r < k. Then **A** can be partitioned, possibly after a reordering of its columns, as $\mathbf{A} = [\mathbf{A}_1 \ \mathbf{A}_1 \mathbf{B}]$, where \mathbf{A}_1 is $qn \times r$ with full column rank, and **B** is $r \times (k-r)$. This result simply makes explicit the fact that k-r columns of A are linear combinations of the other r columns.

Two points need to be established, namely, existence and uniqueness. For existence, observe that equations (12.60) can be written as

$$\boldsymbol{A}^{\top} (\boldsymbol{A}\boldsymbol{\beta}_{\bullet} - (\boldsymbol{\Psi}^{\top} \otimes \boldsymbol{P}_{\boldsymbol{W}}) \boldsymbol{y}_{\bullet}) = \boldsymbol{0}.$$
 (S12.22)

Partition β_{\bullet} as $[\beta_{\bullet}^1 \vdots \beta_{\bullet}^2]$, conformably with the partition of A, so that β_{\bullet}^1 has r elements, and β_{\bullet}^2 has k - r elements. Thus $A\beta_{\bullet} = A_1(\beta_{\bullet}^1 + B\beta_{\bullet}^2)$. Now set $\beta_{\bullet}^2 = 0$. Then we can show that equations (S12.22) have a unique solution for β_{\bullet}^1 . Indeed, equation (S12.22) becomes

$$\begin{bmatrix} \boldsymbol{A}_1^{\mathsf{T}} \\ \boldsymbol{B}^{\mathsf{T}} \boldsymbol{A}_1^{\mathsf{T}} \end{bmatrix} \left(\boldsymbol{A}_1 \boldsymbol{\beta}_{\bullet}^1 - (\boldsymbol{\Psi}^{\mathsf{T}} \otimes \boldsymbol{P}_{\boldsymbol{W}}) \boldsymbol{y}_{\bullet} \right) = \boldsymbol{0}.$$
(S12.23)

Copyright © 2003, Russell Davidson and James G. MacKinnon

Note that if

$$\boldsymbol{A}_{1}^{\top} \left(\boldsymbol{A}_{1} \boldsymbol{\beta}_{\bullet}^{1} - (\boldsymbol{\Psi}^{\top} \otimes \boldsymbol{P}_{\boldsymbol{W}}) \boldsymbol{y}_{\bullet} \right) = \boldsymbol{0}, \qquad (S12.24)$$

then (S12.23) is true, since the last k-r rows are just linear combinations of the first r rows. But A_1 has full column rank of r, and so the $r \times r$ matrix $A_1^{\top}A_1$ is nonsingular. Thus the equations (S12.24) have a unique solution for the r-vector β_{\bullet}^1 , as claimed. Denote this solution by $\tilde{\beta}_{\bullet}^1$, and by $\tilde{\beta}_{\bullet}$ the k-vector $[\tilde{\beta}_{\bullet}^1 \vdots \mathbf{0}]$.

In order to show uniqueness, observe that any other solution to equation (S12.22), say $\hat{\beta}_{\bullet}$, is such that

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}(\hat{\boldsymbol{\beta}}_{\bullet} - \tilde{\boldsymbol{\beta}}_{\bullet}) = \boldsymbol{0}.$$
 (S12.25)

This follows by subtracting (S12.22) evaluated at $\hat{\beta}_{\bullet}$ from the same equation evaluated at $\tilde{\beta}_{\bullet}$. If we write $\beta \equiv \hat{\beta}_{\bullet} - \tilde{\beta}_{\bullet}$, then, by an argument used earlier, (S12.25) implies that $A\beta = 0$, and, by the second part of this exercise, this implies that $P_W X_i \beta_i = 0$ for all $i = 1, \ldots, g$, where β_i is defined as above as the *i*th block of β . If, for some *i*, $P_W X_i$ has full column rank, then it follows that $\beta_i = 0$. Thus the two solutions $\tilde{\beta}_{\bullet}$ and $\hat{\beta}_{\bullet}$ have the same *i*th block, which is therefore defined uniquely, as we wished to show.