Solution to Exercise 12.16

12.16 The \(k \times k \) matrix \(X_\bullet^T (\Sigma^{-1} \otimes P_W) X_\bullet \) given in expression (12.66) is positive semidefinite by construction. Show this property explicitly by expressing the matrix in the form \(A^T A \), where \(A \) is a matrix with \(k \) columns and at least \(k \) rows that should depend on a \(g \times g \) nonsingular matrix \(\Psi \) which satisfies the relation \(\Psi \Psi^T = \Sigma^{-1} \).

Show that a positive semidefinite matrix expressed in the form \(A^T A \) is positive definite if and only if \(A \) has full column rank. In the present case, the matrix \(A \) fails to have full column rank if and only if there exists a \(k \)-vector \(\beta \), different from zero, such that \(A \beta = 0 \). Since \(k = \sum_{i=1}^g k_i \), we may write the vector \(\beta \) as \([\beta_1 \cdots \beta_g] \), where \(\beta_i \) is a \(k_i \)-vector for \(i = 1, \ldots, g \). Show that there exists a nonzero \(\beta \) such that \(A \beta = 0 \) if and only if, for at least one \(i \), there is a nonzero \(\beta_i \) such that \(P_W X_i \beta_i = 0 \), that is, if \(P_W X_i \) does not have full column rank.

Show that, if \(P_W X_i \) has full column rank, then there exists a unique solution of the estimating equations (12.60) for the parameters \(\beta_i \) of equation \(i \).

If we set \(A \equiv (\Psi^T \otimes P_W) X_\bullet \), then we see that

\[
A^T A = X_\bullet^T (\Psi \otimes P_W)(\Psi^T \otimes P_W) X_\bullet \\
= X_\bullet^T (\Psi \Psi^T \otimes P_W) X_\bullet = X_\bullet^T (\Sigma^{-1} \otimes P_W) X_\bullet.
\]

In these manipulations, we make use of the fact that the orthogonal projection matrix \(P_W \) is symmetric and idempotent. Since \(\Psi^T \otimes P_W \) is \(gn \times gn \), and \(X_\bullet \) is \(gn \times k \), it follows that \(A \) is a \(gn \times k \) matrix. The requirement on the number of rows is satisfied because \(gn > k \).

For the second part of the question, the positive semidefinite matrix \(A^T A \) is positive definite if and only if \(\beta^T A^T A \beta = 0 \) implies that \(\beta = 0 \). But

\[
\beta^T A^T A \beta = ||A \beta||^2,
\]

and so the quadratic form is zero if and only if \(||A \beta|| = 0 \), that is, if and only if \(A \beta = 0 \). If this last relation implies that \(\beta = 0 \), then by definition \(A \) has full column rank.

The matrix \(A \) can be expressed explicitly as follows:

\[
A = (\Psi^T \otimes P_W) X_\bullet \\
= \begin{bmatrix}
\psi_{11} P_W & \cdots & \psi_{g1} P_W \\
\vdots & \ddots & \vdots \\
\psi_{1g} P_W & \cdots & \psi_{gg} P_W
\end{bmatrix}
\begin{bmatrix}
X_1 & \cdots & O \\
\vdots & \ddots & \vdots \\
O & \cdots & X_g
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\psi_{11} P_W X_1 & \cdots & \psi_{g1} P_W X_g \\
\vdots & \ddots & \vdots \\
\psi_{1g} P_W X_1 & \cdots & \psi_{gg} P_W X_g
\end{bmatrix}
\]
where \(\psi_{ij} \) is the \(ij \)th element of \(\Psi \). We can postmultiply this by a \(k \)-vector \(\beta \) that is partitioned as \([\beta_1 \mid \cdots \mid \beta_g] \). The result is

\[
A \beta = \begin{bmatrix}
\psi_{11} P_W X_1 & \cdots & \psi_{g1} P_W X_g \\
\vdots & \ddots & \vdots \\
\psi_{1g} P_W X_1 & \cdots & \psi_{gg} P_W X_g
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_g
\end{bmatrix} = \begin{bmatrix}
\sum_{j=1}^g \psi_{j1} P_W X_j \beta_j \\
\vdots \\
\sum_{j=1}^g \psi_{jg} P_W X_j \beta_j
\end{bmatrix}.
\]

If we stack the \(n \times 1 \) blocks of the \(gn \times 1 \) vector \(A \beta \) horizontally in an \(n \times g \) matrix rather than vertically, we obtain

\[
\begin{bmatrix}
\sum_{j=1}^g \psi_{j1} P_W X_j \beta_j \\
\vdots \\
\sum_{j=1}^g \psi_{jg} P_W X_j \beta_j
\end{bmatrix} = \begin{bmatrix}
\psi_{11} & \cdots & \psi_{1g} \\
\vdots & \ddots & \vdots \\
\psi_{g1} & \cdots & \psi_{gg}
\end{bmatrix}
\begin{bmatrix}
P_W X_1 \beta_1 \\
\vdots \\
P_W X_g \beta_g
\end{bmatrix} = [P_W X_1 \beta_1, \cdots, P_W X_g \beta_g] \Psi.
\]

Clearly, the vector \(A \beta \) is zero if and only if the matrix in the last line above is zero. But \(\Psi \) is a nonsingular \(g \times g \) matrix, and so \(A \beta \) is zero for arbitrary nonzero \(\beta \) if and only if the entire matrix \([P_W X_1 \beta_1, \cdots, P_W X_g \beta_g] \) is zero. But that can only be the case if \(P_W X_i \beta_i \) is zero for all \(i = 1, \ldots, g \). Consequently, \(A \beta \) is zero with a nonzero \(\beta \) if and only if there is at least one \(i \) such that \(P_W X_i \beta_i = 0 \) with nonzero \(\beta_i \).

We now turn to the third part of the question. If \(X_\bullet ^\top (\Sigma^{-1} \otimes P_W) X_\bullet \) is nonsingular, then the equations (12.60) have a unique solution for \(\beta_\bullet \), and the result is trivial. The only case that needs further study is therefore the one in which the matrix \(A \) does not have full column rank. Suppose then that \(A \) is of rank \(r < k \). Then \(A \) can be partitioned, possibly after a reordering of its columns, as \(A = [A_1 \ A_2] \), where \(A_1 \) is \(gn \times r \) with full column rank, and \(B \) is \(r \times (k-r) \). This result simply makes explicit the fact that \(k-r \) columns of \(A \) are linear combinations of the other \(r \) columns.

Two points need to be established, namely, existence and uniqueness. For existence, observe that equations (12.60) can be written as

\[
A^\top (A \beta_\bullet - (\Psi^\top \otimes P_W)y_\bullet) = 0.
\] (S12.22)

Partition \(\beta_\bullet \) as \([\beta_1^\bullet \mid \beta_2^\bullet] \), conformably with the partition of \(A \), so that \(\beta_1^\bullet \) has \(r \) elements, and \(\beta_2^\bullet \) has \(k-r \) elements. Thus \(A \beta_\bullet = A_1 (\beta_1^\bullet + B \beta_2^\bullet) \). Now set \(\beta_2^\bullet = 0 \). Then we can show that equations (S12.22) have a unique solution for \(\beta_1^\bullet \). Indeed, equation (S12.22) becomes

\[
\begin{bmatrix}
A_1^\top \\
B^\top A_1^\top
\end{bmatrix}
(A_1 \beta_1^\bullet - (\Psi^\top \otimes P_W)y_\bullet) = 0.
\] (S12.23)
Note that if
\[A_1^\top (A_1\beta_1^* - (\Psi^\top \otimes P_W)y_*) = 0, \]
then (S12.23) is true, since the last \(k - r \) rows are just linear combinations of the first \(r \) rows. But \(A_1 \) has full column rank of \(r \), and so the \(r \times r \) matrix \(A_1^\top A_1 \) is nonsingular. Thus the equations (S12.24) have a unique solution for the \(r \)-vector \(\beta_1^* \), as claimed. Denote this solution by \(\tilde{\beta}_1^* \), and by \(\tilde{\beta}_* \) the \(k \)-vector \([\tilde{\beta}_1^* \ldots 0]\).

In order to show uniqueness, observe that any other solution to equation (S12.22), say \(\hat{\beta}_* \), is such that
\[A^\top A(\hat{\beta}_* - \tilde{\beta}_*) = 0. \]

This follows by subtracting (S12.22) evaluated at \(\hat{\beta}_* \) from the same equation evaluated at \(\tilde{\beta}_* \). If we write \(\beta \equiv \hat{\beta}_* - \tilde{\beta}_* \), then, by an argument used earlier, (S12.25) implies that \(A\beta = 0 \), and, by the second part of this exercise, this implies that \(P_WX_i\beta_i = 0 \) for all \(i = 1, \ldots, g \), where \(\beta_i \) is defined as above as the \(i \)th block of \(\beta \). If, for some \(i \), \(P_WX_i \) has full column rank, then it follows that \(\beta_i = 0 \). Thus the two solutions \(\beta_1^* \) and \(\hat{\beta}_* \) have the same \(i \)th block, which is therefore defined uniquely, as we wished to show.