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Solution to Exercise 12.13

?12.13 The linear expenditure system is a system of demand equations that can be
written as

si =
γipi

E
+ αi

(E −∑m+1
j=1 pjγj

E

)
. (12.123)

Here, si, for i = 1, . . . , m, is the share of total expenditure E spent on com-
modity i conditional on E and the prices pi, for i = 1, . . . , m+1. The equation
indexed by i = m+1 is omitted as redundant, because the sum of the expen-
diture shares spent on all commodities is necessarily equal to 1. The model
parameters are the αi, i = 1, . . . , m, the γi, i = 1, . . . , m + 1, and the m×m
contemporaneous covariance matrix Σ.

Express the system (12.123) as a linear SUR system by use of a suitable
nonlinear reparametrization. The equations of the resulting system must
be subject to a set of cross-equation restrictions. Express these restrictions
in terms of the new parameters, and then set up a GNR in the manner of
Section 12.3 that allows one to obtain restricted estimates of the αi and γi.

Equation (12.123) is a special case of the linear system

si = αi +
m+1∑

j=1

δij(pj/E). (S12.16)

To obtain the linear expenditure system from (S12.16), we need to impose a
large number of restrictions, since (S12.16) has m + m(m + 1) = m2 + 2m
parameters (not counting the parameters of the covariance matrix), while the
linear expenditure system has only 2m + 1. Thus we must impose m2 − 1
restrictions on (S12.16).

Comparing (12.123) with (S12.16), we see that

δii = (1− αi)γi, i = 1, . . . , m, and

δij = −αiγj , i = 1, . . . , m, j = 1, . . . ,m + 1, j 6= i.
(S12.17)

These equations imply a set of nonlinear restrictions on the δij and the αi, as
can be seen by eliminating the parameters γi that appear only in the restricted
parametrization. We have

γi = δii/(1− αi) for i = 1, . . . , m, and γm+1 = −δ1,m+1/α1, (S12.18)

where we have arbitrarily chosen to use the expression for δ1,m+1 to get an
expression for γm+1. The first m equations of (S12.18) are equivalent to the
m equations in the first line of (S12.17), while the last equation of (S12.18)
is equivalent to one of the equations in the second line of (S12.17). Thus
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the m + 1 equations of (S12.18) impose no restrictions. The second line
of (S12.17) contains m2 equations, of which only one has been used. The
remaining m2−1 equations are thus the m2−1 restrictions needed to convert
the unrestricted system (S12.16) into the restricted system (12.123).

The restrictions can be written explicitly in terms of the αi and the δij as
follows. For i = 1, . . . ,m and j = 1, . . . , m, j 6= i, we have the m2 − m
restrictions δij = −αiδjj/(1 − αj), and, for i = 2, . . . , m, we have the m − 1
restrictions α1δi,m+1 = αi δ1,m+1.

For the GNR, we need the matrix of derivatives of the right-hand side of
equation (12.123) with respect to the parameters. We find that

∂si

∂αi
= 1−

m+1∑

j=1

γj(pj/E),

∂si

∂γi
= (1− αi)(pi/E), and

∂si

∂γj
= −αj(pj/E), j 6= i.

These derivatives define the matrix Xi(β). We can then stack the m Xi(β)
matrices to form X•(β), which has 2m + 1 columns and nm rows. Similarly,
we stack the vectors of observations on the shares to form y• and the right-
hand sides of (12.123) to form x•(β). The elements of the (2m + 1)--vector β
are the αi and the γi.

We are now in a position to run the GNR (12.53). We first estimate the
unrestricted model (S12.16) by OLS. This provides consistent estimates άi

and δ́ij . To obtain consistent estimates of the γj , for i = 1, . . . ,m, the obvious
approach is to use equations (S12.18). The OLS residuals from (S12.16) also
allow us to estimate the contemporaneous covariance matrix Σ, and thence
to obtain a matrix Ψ́ such that Ψ́ Ψ́> = Σ́−1. If we run the GNR (12.53),
with everything evaluated at these estimates, we can obtain one-step efficient
estimates β̀ = β́ + b́. At this point, we have three choices:

1. We could stop with the one-step estimates β̀.

2. We could run the GNR again, still using Ψ́ , but evaluating x•(β) and
X•(β) at β̀, and continue iterating until convergence. If this procedure
converges, it yields feasible GLS estimates.

3. We could run the GNR again, computing a new matrix Ψ̀ in the obvious
way and evaluating x•(β) and X•(β) at β̀, and continue iterating until
convergence. If this procedure converges, it yields ML estimates.

Of course, the two iterative procedures need not converge. If not, modified
versions in which the change in β from one iteration to the next is reduced
by multiplying b́ by a positive scalar less than unity might well do so.
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