Solution to Exercise 12.1

*12.1 Show that the $gn \times gn$ covariance matrix Σ_{\bullet} defined in equation (12.07) is positive definite if and only if the $g \times g$ matrix Σ used to define it is positive definite.

Partition the $gn \times 1$ vector \boldsymbol{x}_{\bullet} as $[\boldsymbol{x}_1 \vdots \cdots \vdots \boldsymbol{x}_g]$. Then the quadratic form $\boldsymbol{x}_{\bullet}^{\top} \boldsymbol{\Sigma}_{\bullet} \boldsymbol{x}_{\bullet}$ can be written as

$$\boldsymbol{x}_{\bullet}^{\top} \boldsymbol{\Sigma}_{\bullet} \boldsymbol{x}_{\bullet} = \sum_{i=1}^{g} \sum_{j=1}^{g} \sigma_{ij} \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j} = \operatorname{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{X}), \quad (S12.01)$$

where the $n \times g$ matrix $\boldsymbol{X} \equiv [\boldsymbol{x}_1 \cdots \boldsymbol{x}_g]$.

Choose an arbitrary nonzero g-vector \boldsymbol{z} , and construct the gn-vector \boldsymbol{x}_{\bullet} as $\boldsymbol{z} \otimes \boldsymbol{e}_1$, where \boldsymbol{e}_1 is the first unit basis vector in E^g . Thus $\boldsymbol{x}_i = z_i \boldsymbol{e}_1$. Using the middle expression in (S12.01), and noting that $\boldsymbol{e}_1^{\mathsf{T}} \boldsymbol{e}_1 = 1$, we see that

$$\boldsymbol{x}_{\bullet}^{\top} \boldsymbol{\Sigma}_{\bullet} \boldsymbol{x}_{\bullet} = \sum_{i=1}^{g} \sum_{j=1}^{g} \sigma_{ij} z_{i} z_{j} = \boldsymbol{z}^{\top} \boldsymbol{\Sigma} \boldsymbol{z}.$$

If Σ_{\bullet} is positive definite, then the leftmost expression above is positive, and so also, therefore, is the rightmost one. Since this holds for arbitrary nonzero z, this proves that Σ is positive definite.

Now suppose that Σ is positive definite. The rightmost expression in (S12.01) is equal to

$$\operatorname{Tr}(\boldsymbol{X}\boldsymbol{\Sigma}\boldsymbol{X}^{\top}) = \sum_{i=1}^{g} \boldsymbol{e}_{i}^{\top}\boldsymbol{X}\boldsymbol{\Sigma}\boldsymbol{X}^{\top}\boldsymbol{e}_{i}, \qquad (S12.02)$$

since each of the terms in the summation is one of the elements of the principal diagonal of the matrix $X\Sigma X^{\top}$. The i^{th} term must be nonnegative, since it is a quadratic form in the positive definite matrix Σ , and it is zero only if $e_i^{\top} X$, which is the i^{th} row of X, is zero. Thus the summation on the right of equation (S12.02) is zero if and only if all the elements of X are zero, that is, if and only if all the elements of x_{\bullet} are zero. Otherwise, at least one term in the summation is positive, and so $x_{\bullet}^{\top} \Sigma_{\bullet} x_{\bullet}$ is positive for all nonzero x_{\bullet} , which proves that Σ_{\bullet} is positive definite.