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Solution to Exercise 11.18

?11.18 Show that the expectation of the Hessian of the loglikelihood function (11.41),
evaluated at the parameter vector θ, is equal to the negative of the k×k matrix

I(θ) ≡
n∑

t=1

J∑

j=0

1

Πtj(θ)
T>tj (θ)Ttj(θ), (11.91)

where Ttj(θ) is the 1×k vector of partial derivatives of Πtj(θ) with respect to
the components of θ. Demonstrate that (11.91) can also be computed using
the outer product of the gradient definition of the information matrix.

Use the above result to show that the matrix of sums of squares and cross-
products of the regressors of the DCAR, regression (11.42), evaluated at θ,
is I(θ). Show further that 1/s2 times the estimated OLS covariance matrix
from (11.42) is an asymptotically valid estimate of the covariance matrix of
the MLE θ̂ if the artificial variables are evaluated at θ̂.

The contribution to the loglikelihood function (11.41) by observation t is

J∑

j=0

dtj log Πtj(θ).

The column vector of derivatives of this contribution with respect to θ is

J∑

j=0

dtj
1

Πtj(θ)
T>

tj (θ). (S11.17)

If we then differentiate (S11.17) with respect to θ, we obtain

J∑

j=0

dtj
−1

Π2
tj(θ)

T>
tj (θ)Ttj(θ) +

J∑

j=0

dtj
1

Πtj(θ)
T ′

tj(θ), (S11.18)

where T ′
tj(θ) denotes the k× k matrix of derivatives of Ttj(θ) with respect to

the vector θ.

The information matrix is minus the expectation of expression (S11.18),
summed over all n. In order to take the expectation, we simply replace dtj ,
which is the only thing that depends on the dependent variables, by its ex-
pectation, which is Πtj(θ). The result is

J∑

j=0

−1
Πtj(θ)

T>
tj (θ)Ttj(θ) +

J∑

j=0

T ′
tj(θ). (S11.19)
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As we saw when discussing (11.43), the fact that the probabilities sum to
unity implies that the vector of derivatives with respect to any parameter
must sum to 0, which implies that the vectors of second derivatives must also
sum to 0. Therefore, the second term in (S11.19) is equal to 0. Changing the
sign of the first term and summing over all n yields expression (11.91) for the
information matrix, which is what we were required to show.

Of course, we can also obtain (11.91) by using the definition (10.31) of the
information matrix in terms of the contributions to the gradient of the loglike-
lihood function. A typical contribution is (S11.17). The product of (S11.17)
with itself transposed is

J∑

j=0

dtj
1

Π2
tj(θ)

T>
tj (θ)Ttj(θ). (S11.20)

The tth contribution to the information matrix is the expectation of expression
(S11.20). We can obtain this expectation by replacing dtj by Πtj(θ). The
result is

It(θ) =
J∑

j=0

1
Πtj(θ)

T>
tj (θ)Ttj(θ).

Summing this over all t yields expression (11.91) for the information matrix,
as required.

The regressors of the DCAR, regression (11.42), are Π−1/2
tj (θ)Ttj(θ). The

product of this vector transposed times itself is

1
Πtj(θ)

T>
tj (θ)Ttj(θ).

Summing over t = 1, . . . , n and j = 0, . . . , J yields expression (11.91). Thus
the matrix of sums of squares and cross products of the artificial regression is
the information matrix, as we were required to show.

It is clear from the preceding result that, if we evaluate the inverse of the
information matrix at θ̂, the vector of ML estimates, we obtain I−1(θ̂), which
is an asymptotically valid estimate of the covariance matrix of the MLE.
The OLS covariance matrix from (11.42) evaluated at θ̂ is equal to s2 times
I−1(θ̂). Thus, if we divide this matrix by 1/s2, we obtain an asymptotically
valid estimate of the covariance matrix of θ̂.
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