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Solution to Exercise 10.12

?10.12 Let θ̃ denote any unbiased estimator of the k parameters of a parametric
model fully specified by the loglikelihood function `(θ). The unbiasedness
property can be expressed as the following identity:

∫
L(y,θ) θ̃dy = θ. (10.105)

By using the relationship between L(y,θ) and `(y,θ) and differentiating this
identity with respect to the components of θ, show that

Covθ(g(θ), (θ̃ − θ)) = I,

where I is a k × k identity matrix, and the notation Covθ indicates that the
covariance is to be calculated under the DGP characterized by θ.

Let V denote the 2k × 2k covariance matrix of the 2k --vector obtained by
stacking the k components of g(θ) above the k components of θ̃ − θ. Partition
this matrix into 4 k × k blocks as follows:

V =

[
V1 C

C> V2

]
,

where V1 and V2 are, respectively, the covariance matrices of the vectors g(θ)
and θ̃ − θ under the DGP characterized by θ. Then use the fact that V is pos-
itive semidefinite to show that the difference between V2 and I−1(θ), where
I(θ) is the (finite-sample) information matrix for the model, is a positive
semidefinite matrix. Hint: Use the result of Exercise 7.11.

Since the right-hand side of equation (10.105) is the vector θ, its derivative
with respect to the vector θ must be a k × k identity matrix. Moreover,
because `(y, θ) = log L(y, θ),

∂L(y,θ)
∂θ

= L(y, θ)g(y, θ).

Therefore, the derivative of the identity (10.105) is
∫

L(y, θ)θ̃g>(y, θ)dy = I. (S10.25)

The left-hand side of (S10.25) is simply the covariance matrix of g(θ) and θ̃,
where we write g(θ) for g(θ, y), taken with respect to the distribution char-
acterized by θ. But since Eθg(θ) = 0, it is also the covariance matrix of g(θ)
and θ̃ − θ. Therefore, we see that

Covθ
(
g(θ), (θ̃ − θ)

)
= I,

which is what we were required to show.
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Now consider the 2k×2k matrix V defined in the question. We have just seen
that the off-diagonal blocks C and C> are k×k identity matrices. The upper
left-hand k× k block V1 is the covariance matrix of the gradient vector g(θ),
which, by definition (as we saw in Exercise 10.5), is the information matrix
I(θ). Therefore

V =
[

I(θ) I
I V2

]
.

Since V is a covariance matrix, it must be positive semidefinite. This implies
that its inverse must also be positive semidefinite, as must each of the diagonal
blocks of the inverse. By the result of Exercise 7.11, the lower right-hand block
of the inverse is

(
V2 − II−1(θ)I

)−1 =
(
V2 − I−1(θ)

)−1
.

Since this matrix is positive semidefinite, the matrix V2 − I−1(θ) must also
be positive semidefinite. Because this is the difference between the covariance
matrix of an arbitrary unbiased estimator and the inverse of the information
matrix, the Cramér-Rao result has been proved.
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