Solution to Exercise 1.14

1.14 Let a random variable X_1 be distributed as $N(0,1)$. Now suppose that a second random variable, X_2, is constructed as the product of X_1 and an independent random variable Z, which equals 1 with probability $1/2$ and -1 with probability $1/2$.

What is the (marginal) distribution of X_2? What is the covariance between X_1 and X_2? What is the distribution of X_1 conditional on X_2?

The marginal distribution of X_2 is just the standard normal distribution. Since the standard normal density is symmetric, randomly replacing X_1 with $-X_1$ half (or any fraction) of the time does not change the distribution at all. Formally,

$$
\Pr(X_2 \leq x) = \Pr((Z = 1) \cap (X_1 \leq x)) + \Pr((Z = -1) \cap (X_1 \geq -x))
$$

$$
= \frac{1}{2} (\Phi(x) + 1 - \Phi(-x))
$$

$$
= \frac{1}{2} (\Phi(x) + \Phi(x)) = \Phi(x).
$$

The step to the second line above follows from the independence of X_1 and Z, and the fact that $\Pr(X_1 \geq x) = 1 - \Pr(X_1 \leq x)$. The step to the third line uses the symmetry of the standard normal distribution, which implies that $\Pr(X_1 \leq x) = \Pr(X_1 \geq -x)$, that is, $\Phi(x) = 1 - \Phi(-x)$.

The covariance between X_1 and X_2 is clearly zero. Since both X_1 and X_2 have mean zero, we do not need to subtract the expectations when we compute the covariance. Thus we have

$$
\text{Cov}(X_1, X_2) = \text{E}(X_1X_2) = \frac{1}{2} \text{E}(X_1^2) - \frac{1}{2} \text{E}(X_1^2) = 0.
$$

The distribution of X_1 conditional on X_2 is exactly the same as the distribution of X_2 conditional on X_1. That is, $X_1 = X_2$ with probability $1/2$, and $X_1 = -X_2$ with probability $1/2$.

Copyright © 2003, Russell Davidson and James G. MacKinnon