Solution to Exercise 1.12

*1.12 Show that the variance of the random variable $X_1 - E(X_1 | X_2)$ cannot be greater than the variance of X_1 , and that the two variances are equal if X_1 and X_2 are independent. This result shows how one random variable can be informative about another: Conditioning on it reduces variance unless the two variables are independent.

We assume to begin with that $E(X_1) = 0$. Then the variance of X_1 is just $E(X_1^2)$. This can be written as

$$E\left(\left(X_{1} - E(X_{1} \mid X_{2}) + E(X_{1} \mid X_{2})\right)^{2}\right)$$

= $E\left(\left(X_{1} - E(X_{1} \mid X_{2})\right)^{2}\right) + 2E\left(\left(X_{1} - E(X_{1} \mid X_{2})\right)E(X_{1} \mid X_{2})\right)$
+ $E\left(E(X_{1} \mid X_{2})^{2}\right).$

The first term on the right-hand side above is the variance of $X_1 - E(X_1 | X_2)$. The middle term is the covariance of $X_1 - E(X_1 | X_2)$ and $E(X_1 | X_2)$, which is zero, as we showed in the solution to the previous exercise. The third term is the variance of $E(X_1 | X_2)$. Thus we have

$$\operatorname{Var}(X_1) = \operatorname{Var}(X_1 - \operatorname{E}(X_1 \mid X_2)) + \operatorname{Var}(\operatorname{E}(X_1 \mid X_2)).$$
(S1.09)

Since a variance is necessarily nonnegative, it follows that

$$\operatorname{Var}(X_1) \ge \operatorname{Var}(X_1 - \operatorname{E}(X_1 \mid X_2)).$$
 (S1.10)

If X_1 and X_2 are independent, then $E(X_1 | X_2) = E(X_1) = 0$. In this case, it follows that $X_1 = X_1 - E(X_1 | X_2)$, and so the variance of X_1 is the same as that of $X_1 - E(X_1 | X_2)$.

If $E(X_1) = \mu_1 \neq 0$, we can apply (S1.10) to $X_1 - \mu_1$, which has mean zero. Since a variance is a *central* moment, we have that $Var(X_1) = Var(X_1 - \mu_1)$. The right-hand side of (S1.10) for $X_1 - \mu_1$ is

$$\operatorname{Var}(X_{1} - \mu_{1} - \operatorname{E}(X_{1} - \mu_{1} | X_{2})) = \operatorname{Var}(X_{1} - \mu_{1} - \operatorname{E}(X_{1} | X_{2}) + \mu_{1})$$
$$= \operatorname{Var}(X_{1} - \operatorname{E}(X_{1} | X_{2})),$$

from which we may conclude that both sides of (S1.10) are independent of the value of μ_1 , and so (S1.10) is true whether X_1 has mean zero or not.

Copyright © 2003, Russell Davidson and James G. MacKinnon