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where the new parameter α is the short-run multiplier, δ1 = λ2 − 1, and
δ2 = (1 − λ2)η2. Since (14.54) is just a linear regression, the parameter
of interest, which is η2, can be estimated by η̂E

2 ≡ −δ̂2/δ̂1, using the OLS
estimates of δ1 and δ2.

Equation (14.54) is without doubt an unbalanced regression, and so we must
expect that the OLS estimates do not have their usual distributions. It turns
out that the ECM estimator η̂E

2 is a super-consistent estimator of η2. In
fact, it is usually less biased than the levels estimator η̂L

2 obtained from the
simple regression of yt2 on yt1, as readers are invited to check by simulation
in Exercise 14.21.

In the general case, with g cointegrated variables, we may estimate the coint-
egrating vector using the linear regression

∆yt = Xtγ + ∆Yt2α + δyt−1 + Yt−1,2δ2 + et, (14.55)

where, as before, Xt is a vector of deterministic regressors, γ is the associated
parameter vector, Yt = [yt Yt2] is a 1 × g vector, δ is a scalar, and α and
δ2 are both (g − 1)--vectors. Regression (14.54) is evidently a special case
of regression (14.55). The super-consistent ECM estimator of η2 is then the
ratio of the OLS estimator δ̂2 to the OLS estimator −δ̂.

Other Approaches

When we cannot, or do not want to, specify an ECM, at least two other
methods are available for estimating a cointegrating vector. One, proposed
by Phillips and Hansen (1990), is called fully modified estimation. The idea
is to modify the OLS estimate of η2 in equation (14.45) by subtracting an
estimate of the bias. The result turns out to be asymptotically multivariate
normal, and it is possible to estimate its asymptotic covariance matrix. To
explain just how fully modified estimation works would require more space
than we have available. Interested readers should consult the original paper
or Banerjee, Dolado, Galbraith, and Hendry (1993, Chapter 7).

A second approach, which is due to Saikkonen (1991), is much simpler to
describe and implement. We run the regression

yt = Xtγ + Yt2η2 +
p∑

j=−p

∆Yt+j,2δj + νt (14.56)

by OLS. Observe that regression (14.56) is just regression (14.45) with the
addition of p leads and p lags of the first differences of Yt2. As with augmented
Dickey-Fuller tests, the idea is to add enough leads and lags so that the error
terms appear to be serially independent. Provided that p is allowed to increase
at the appropriate rate as n → ∞, this regression yields estimates that are
asymptotically efficient.


