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paragraph. When these two equations are solved for v0 and v1, they yield

v0 = σ2
ε

1 + 2ρ1α1 + α2
1

1− ρ2
1

, and v1 = σ2
ε
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1

. (13.24)

Finally, multiplying equation (13.23) by ut−i for i > 1 and taking expectations
gives vi = ρ1vi−1, from which we conclude that

vi = σ2
ε ρi−1

1

(ρ1 + α1)(1 + ρ1α1)
1− ρ2

1

. (13.25)

Equation (13.25) provides all the autocovariances of an ARMA(1, 1) process.
Using it and the first of equations (13.24), we can derive the autocorrelations.

Autocorrelation Functions

As we have seen, the autocorrelation between ut and ut−j can be calculated
theoretically for any known stationary ARMA process. The autocorrelation
function, or ACF, expresses the autocorrelation as a function of the lag j for
j = 1, 2 . . . . If we have a sample yt, t = 1, . . . , n, from an ARMA process
of possibly unknown order, then the j th order autocorrelation ρ(j) can be
estimated by using the formula

ρ̂(j) =
Ĉov(yt, yt−j)

V̂ar(yt)
, (13.26)

where

Ĉov(yt, yt−j) =
1

n− 1

n∑

t=j+1

(yt − ȳ)(yt−j − ȳ), (13.27)

and

V̂ar(yt) =
1

n− 1

n∑
t=1

(yt − ȳ)2. (13.28)

In equations (13.27) and (13.28), ȳ is the mean of the yt. Of course, (13.28)
is just the special case of (13.27) in which j = 0. It may seem odd to divide
by n− 1 rather than by n− j − 1 in (13.27). However, if we did not use the
same denominator for every j, the estimated autocorrelation matrix would
not necessarily be positive definite. Because the denominator is the same, the
factors of 1/(n− 1) cancel in the formula (13.26).

The empirical ACF, or sample ACF, expresses the ρ̂(j), defined in equation
(13.26), as a function of the lag j. Graphing the sample ACF provides a
convenient way to see what the pattern of serial dependence in any observed
time series looks like, and it may help to suggest what sort of stochastic
process would provide a good way to model the data. For example, if the
data were generated by an MA(1) process, we would expect that ρ̂(1) would
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be an estimate of α1/(1 + α2
1) and all the other ρ̂(j) would be approximately

equal to zero. If the data were generated by an AR(1) process with ρ1 > 0,
we would expect that ρ̂(1) would be an estimate of ρ1 and would be relatively
large, the next few ρ̂(j) would be progressively smaller, and the ones for
large j would be approximately equal to zero. A graph of the sample ACF is
sometimes called a correlogram; see Exercise 13.15.

The partial autocorrelation function, or PACF, is another way to characterize
the relationship between yt and its lagged values. The partial autocorrelation
coefficient of order j is defined as the plim of the least squares estimator of
the coefficient ρ

(j)
j in the linear regression

yt = γ(j) + ρ
(j)
1 yt−1 + . . . + ρ

(j)
j yt−j + εt, (13.29)

or, equivalently, in the minimization problem

min
γ(j), ρ

(j)
i

E
(
yt − γ(j) −

j∑

i=1

ρ
(j)
i yt−i

)2
. (13.30)

The superscript “(j)” appears on all the coefficients in regression (13.29) to
make it plain that all the coefficients, not just the last one, are functions of j,
the number of lags. We can calculate the empirical PACF, or sample PACF,
up to order J by running regression (13.29) for j = 1, . . . , J and retaining
only the estimate ρ̂

(j)
j for each j. Just as a graph of the sample ACF may

help to suggest what sort of stochastic process would provide a good way to
model the data, so a graph of the sample PACF, interpreted properly, may
do the same. For example, if the data were generated by an AR(2) process,
we would expect the first two partial autocorrelations to be relatively large,
and all the remaining ones to be insignificantly different from zero.

13.3 Estimating AR, MA, and ARMA Models

All of the time-series models that we have discussed so far are special cases
of an ARMA(p, q) model with a constant term, which can be written as

yt = γ +
p∑

i=1

ρiyt−i + εt +
q∑

j=1

αj εt−j , (13.31)

where the εt are assumed to be white noise. Not counting the variance of the
innovations, there are p + q + 1 parameters to estimate in the model (13.31):
the ρi, for i = 1, . . . , p, the αj , for j = 1, . . . , q, and γ. Recall that γ is not
the unconditional expectation of yt unless all of the ρi are zero.

For our present purposes, it is perfectly convenient to work with models that
allow yt to depend on exogenous explanatory variables and are therefore even


