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Of course, the last line of (12.08) can be true only for nonsingular, square
matrices A and B. The Kronecker product is not commutative, by which we
mean that A ⊗B and B ⊗A are different matrices. However, the elements
of these two products are the same; they are just laid out differently. In fact,
it can be shown that B ⊗A can be obtained from A ⊗B by a sequence of
interchanges of rows and columns. Exercise 12.2 asks readers to prove these
properties of Kronecker products. For an exceedingly detailed discussion of
the properties of Kronecker products, see Magnus and Neudecker (1988).

As we have seen, the system of equations defined by (12.01) and (12.02) is
equivalent to the single equation (12.04), with gn observations and error terms
that have covariance matrix Σ•. Therefore, when the matrix Σ is known, we
can obtain consistent and efficient estimates of the βi, or equivalently of β•,
simply by using the classical GLS estimator (7.04). We find that

β̂GLS
• = (X•>Σ•−1X•)−1X•>Σ•−1y•

=
(
X•>(Σ−1 ⊗ In)X•

)−1
X•>(Σ−1 ⊗ In)y•, (12.09)

where, to obtain the second line, we have used the last of equations (12.08).
This GLS estimator is sometimes called the SUR estimator. From the result
(7.05) for GLS estimation, its covariance matrix is

Var(β̂GLS
• ) =

(
X•>(Σ−1 ⊗ In)X•

)−1
. (12.10)

Since Σ is assumed to be known, we can use this covariance matrix directly,
because there are no variance parameters to estimate.

As in the univariate case, there is a criterion function associated with the GLS
estimator (7.04). This criterion function is simply expression (7.06) adapted
to the model (12.04), namely,

(y• −X•β•)>(Σ−1 ⊗ In)(y• −X•β•). (12.11)

The first-order conditions for the minimization of (12.11) with respect to β•
can be written as

X•>(Σ−1 ⊗ In)(y• −X•β•) = 0. (12.12)

These moment conditions, which are analogous to conditions (7.07) for the
case of univariate GLS estimation, can be interpreted as a set of estimating
equations that define the GLS estimator (12.09).

In the slightly less unrealistic situation in which Σ is assumed to be known
only up to a scalar factor, so that Σ = σ2∆, the form of (12.09) would be
unchanged, but with ∆ replacing Σ, and the covariance matrix (12.10) would
become

Var(β̂GLS
• ) = σ2

(
X•>(∆−1 ⊗ In)X•

)−1
.
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In practice, to estimate Var(β̂GLS
• ), we replace σ2 by something that estimates

it consistently. Two natural estimators are

σ̂2 ≡ 1
gn

û•>(∆−1 ⊗ In)û•, and

s2 ≡ 1
(gn− k)

û•>(∆−1 ⊗ In)û•,

where û• denotes the vector of error terms from GLS estimation of (12.04).
The first of these estimators is analogous to the ML estimator of σ2 in the
linear regression model, and the second is analogous to the GLS estimator.

At this point, a word of warning is in order. Although the GLS estimator
(12.09) has quite a simple form, it can be expensive to compute when gn
is large. In consequence, no sensible regression package would actually use
this formula. We can proceed more efficiently by working directly with the
estimating equations (12.12). Writing them out explicitly, we obtain

X•>(Σ−1 ⊗ In)(y• −X•β̂•)

=




X1
> · · · O

...
. . .

...
O · · · Xg

>







σ11In · · · σ1gIn
...

. . .
...

σg1In · · · σggIn







y1 −X1β̂
GLS
1

...
yg −Xgβ̂

GLS
g




=




σ11X1
> · · · σ1gX1

>
...

. . .
...

σg1Xg
> · · · σggXg

>







y1 −X1β̂
GLS
1

...
yg −Xgβ̂

GLS
g


 = 0, (12.13)

where σij denotes the ij th element of the matrix Σ−1. By solving the k
equations (12.13) for the β̂i, we find easily enough (see Exercise 12.5) that

β̂GLS
• =




σ11X1
>X1 · · · σ1gX1

>Xg

...
. . .

...

σg1Xg
>X1 · · · σggXg

>Xg




−1


∑g
j=1 σ1jX1

>yj

...∑g
j=1 σgjXg

>yj


. (12.14)

Although this expression may look more complicated than (12.09), it is much
less costly to compute. Recall that we grouped all the linearly independent
explanatory variables of the entire SUR system into the n× l matrix X. By
computing the matrix product X>X, we may obtain all the blocks of the form
Xi
>Xj merely by selecting the appropriate rows and corresponding columns

of this product. Similarly, if we form the n × g matrix Y by stacking the g
dependent variables horizontally rather than vertically, so that

Y ≡ [y1 · · · yg ] ,


