438 The Method of Maximum Likelihood

As this example demonstrates, even when the errors in the DGP are normally,
identically, and independently distributed, using the wrong transformation of
the dependent variable as the regressand yields, in general, a regression with
error terms that are neither homoskedastic nor symmetric. Thus, when we
encounter heteroskedasticity and skewness in the residuals of a regression, one
possible way to eliminate them is to estimate a different regression model in
which the dependent variable has been subjected to some sort of nonlinear
transformation.

Comparing Alternative Models

It is perfectly easy to subject the dependent variable to various nonlinear
transformations and estimate one or more regression models for each of them.
However, least-squares estimation does not provide any way to compare the
fits of competing models that involve different transformations. But max-
imum likelihood estimation under the assumption that the error terms are
normally distributed does provide a straightforward way to do so. The idea is
to compare the loglikelihoods of the alternative models considered as models
for the same dependent variable.

For Model 1, in which ¥, is the regressand, the concentrated loglikelihood
function is simply
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Expression (10.92) is just expression (10.11) specialized to Model 1. Most
regression packages report the value of (10.92) evaluated at the OLS estimates
as the maximized value of the loglikelihood function.

In order to construct the loglikelihood function for the loglinear Model 2,
interpreted as a model for y; rather than for logy;, we need the density of y;
as a function of the model parameters. This requires us to use a standard
result about transformations of variables. Suppose that we wish to know the
CDF of a random variable X, but that what we actually know is the CDF of
a random variable Z defined as Z = h(X), where h(-) is a strictly increasing
deterministic function. Denote this known CDF by Fz. Then we can obtain
the CDF Fx of X as follows.

Fx(z) =Pr(X < z) = Pr(h(X) < h(z))
=Pr(Z < h(z)) = Fz(h(z)). (10.93)

The second equality above follows because h(-) is strictly increasing. The
relation between the densities, or PDF's, of the variables X and Z is obtained
by differentiating the leftmost and rightmost quantities in (10.93) with respect
to z. Denoting the PDFs by fx () and fz(:), we obtain

fx (@) = Fx(z) = Fz (h(2)) W (z) = fz(h(z)) ' (z).
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If h is strictly decreasing, the above result must be modified so as to use the
absolute value of the derivative. As readers are asked to show in Exercise
10.23, the result then becomes

fx (@) = fz(h(z))|W (2)]. (10.94)

It is not difficult to see that (10.94) is a perfectly general result which holds
for any strictly monotonic function h.

The factor by which fz(z) is multiplied in order to produce fx(z) is the abso-
lute value of what is called the Jacobian of the transformation. For Model 2,
X is replaced by y;, and the transformation h is the logarithm, so that Z
becomes log y;. The density of y; is then given by (10.94) in terms of that of
log ys:

Yt
where we drop subscripts and denote the PDFs of y; and logy; by f(y:) and
f(logy:), respectively.

We can now compute the loglikelihood for Model 2 thought of as a model for
the y;. The concentrated loglikelihood for the logy; is given by (10.11):

dlog y
dyq

f(ye) = f(log )
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This expression is the log of the product of the densities of the logy;. Since
the density of y:, by (10.95), is equal to 1/y; times the density of log y:, the
loglikelihood function we are seeking is

—glog 2m — % - %log <%Z(1og Y — Xt2,32)2> — Zlogyt. (10.97)
t=1
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The last term here is a Jacobian term. It is the sum over all ¢ of the logarithm
of the Jacobian factor 1/y; in the density of y;. This Jacobian term is abso-
lutely critical. If it were omitted, Model 2 would be a model for log 3, and it
would make no sense to compare the value of the loglikelihood for (10.96) with
the value for Model 1, which is a model for y;. But when the Jacobian term is
included, the loglikelihoods for both models are expressed in terms of y;, and
it is perfectly valid to compare their values. We can say with confidence that
the model corresponding to whichever of (10.92) and (10.97) has the largest
value is the model that better fits the data.

Most regression packages evaluate expression (10.96) at the OLS estimates for
the loglinear model and report that as the maximized value of the loglikelihood
function. In order to compute the loglikelihood (10.97), which is what we need
if we are to compare the fits of the linear and loglinear models, we have to
add the Jacobian term to the value reported by the package.



