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simple example. More generally, as discussed by Davidson and MacKinnon
(1987), we can allow for drifting DGPs that do not lie within the alternative
hypothesis, but that drift toward some fixed DGP in the null hypothesis.
It then turns out that, for drifting DGPs that are, in an appropriate sense,
equally distant from the null, the noncentrality parameter is maximized by
those DGPs that do lie within the alternative hypothesis. This result justifies
the intuition that, for a given number of degrees of freedom, tests against
an alternative which happens to be true should have more power than tests
against other alternatives.

10.7 ML Estimation of Models with Autoregressive Errors

In Section 7.8, we discussed several methods based on generalized or nonlinear
least squares for estimating linear regression models with error terms that
follow an autoregressive process. An alternative approach is to use maximum
likelihood. If it is assumed that the innovations are normally distributed,
ML estimation is quite straightforward. With the normality assumption, the
model (7.40) considered in Sections 7.7 and 7.8 can be written as

yt = Xtβ + ut, ut = ρut−1 + εt, εt ∼ NID(0, σ2
ε ), (10.86)

in which the error terms follow an AR(1) process with parameter ρ that is
assumed to be less than 1 in absolute value. If we omit the first observation,
this model can be rewritten as in equation (7.41). The result is just a nonlinear
regression model, and so, as we saw in Section 10.2, the ML estimates of β
and ρ must coincide with the NLS ones.

Maximum likelihood estimation of (10.86) is more interesting if we do not
omit the first observation, because, in that case, the ML estimates no longer
coincide with either the NLS or the (feasible) GLS estimates. For observa-
tions 2 through n, the contributions to the loglikelihood can be written as
in (10.09):

`t(yt, β, ρ, σε) =

− 1−
2

log 2π − log σε − 1
2σ2

ε

(yt − ρyt−1 −Xtβ + ρXt−1β)2.
(10.87)

As required by (10.24), this expression is the log of the density of yt conditional
on the lagged dependent variable yt−1.

For the first observation, the only information we have is that

y1 = X1β + u1,

since the lagged dependent variable y0 is not observed. However, with the
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normality assumption, we know from Section 7.8 that u1 ∼ N
(
0, σ2

ε /(1− ρ2)
)
.

Thus the loglikelihood contribution from the first observation is the log of the
density of that distribution, namely,

`1(y1, β, ρ, σε) =

− 1−
2

log 2π − log σε + 1−
2

log(1− ρ2)− 1− ρ2

2σ2
ε

(y1 −X1β)2.
(10.88)

Of course, we are assuming here that X1 is exogenous and therefore uncorre-
lated with u1; see the discussion in Section 7.8.

The loglikelihood function for the model (10.86) based on the entire sample
is obtained by adding the contribution (10.88) to the sum of the contribu-
tions (10.87), for t = 2, . . . , n. The result is

`(y, β, ρ, σε) = − n−
2

log 2π − n log σε + 1−
2

log(1− ρ2) (10.89)

− 1
2σ2

ε

(
(1− ρ2)(y1 −X1β)2 +

n∑
t=2

(yt − ρyt−1 −Xtβ + ρXt−1β)2
)
.

The term 1
2 log(1− ρ2) that appears in (10.89) plays an extremely important

role in ML estimation. Because it tends to minus infinity as ρ tends to ±1,
its presence in the loglikelihood function ensures that there must be a maxi-
mum within the stationarity region defined by |ρ| < 1. Therefore, maximum
likelihood estimation using the full sample is guaranteed to yield an estimate
of ρ for which the AR(1) process is stationary. This is not the case for any of
the estimation techniques discussed in Section 7.8.

Let us define ut(β) as yt −Xtβ for t = 1, . . . , n, and let ût = ut(β̂). Then,
from the first-order conditions for the maximization of (10.89), it can be seen
that the ML estimators β̂, ρ̂, and σ̂2

ε satisfy the following equations:

(1− ρ̂2)X1
>û1 +

n∑
t=2

(Xt − ρ̂Xt−1)>(ût − ρ̂ ût−1) = 0,

ρ̂ û2
1 −

ρ̂ σ̂2
ε

1− ρ̂2
+

n∑
t=2

ût−1(ût − ρ̂ ût−1) = 0, and

σ̂2
ε = 1−

n

(
(1− ρ̂2)û2

1 +
n∑

t=2

(ût − ρ̂ ût−1)2
)
.

(10.90)

The first two of these equations are similar, but not identical, to the estimating
equations (7.71) developed in Section 7.8 for iterated feasible GLS or NLS
with account taken of the first observation. In Exercise 10.21, an artificial
regression is developed which makes it quite easy to solve equations (10.90).
This approach is simpler than the better-known algorithm for finding ML
estimates that was proposed by Beach and MacKinnon (1978).


