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the other two, and they can sometimes overreject severely. The performance of
alternative Wald tests in models like (10.61) has been investigated by Gregory
and Veall (1985, 1987). Other cases in which Wald tests perform very badly
are discussed by Lafontaine and White (1986).

Because of their dubious finite-sample properties and their sensitivity to the
way in which the restrictions are written, we recommend against using Wald
tests when the outcome of a test is important, except when it would be very
costly or inconvenient to estimate the restricted model. Asymptotic t statistics
should also be used with great caution, since, as we saw in Section 6.7, every
asymptotic t statistic is simply the signed square root of a Wald statistic.
Because conventional confidence intervals are based on inverting asymptotic
t statistics, they too should be used with caution.

Lagrange Multiplier Tests

The Lagrange multiplier, or LM, test is the third of the three classical tests.
The name suggests that it is based on the vector of Lagrange multipliers from
a constrained maximization problem. That can indeed be the case. In prac-
tice, however, LM tests are very rarely computed in this way. Instead, they
are usually based on the gradient vector, or score vector, of the unrestricted
loglikelihood function, evaluated at the restricted estimates. LM tests are
very often computed by means of artificial regressions. In fact, as we will see,
some of the GNR-based tests that we encountered in Sections 6.7 and 7.7 are
essentially Lagrange multiplier tests.

For simplicity, we begin our discussion of LM tests by considering the case in
which the restrictions to be tested are zero restrictions, that is, restrictions
according to which some of the model parameters are zero. In such cases,
the r restrictions can be written as θ2 = 0, where the parameter vector θ is
partitioned as θ = [θ1

.... θ2], possibly after some reordering of the elements.
The vector θ̃ of restricted estimates can then be expressed as θ̃ = [θ̃1

.... 0].
The vector θ̃1 maximizes the restricted loglikelihood function `(θ1,0), and so
it satisfies the restricted likelihood equations

g1(θ̃1,0) = 0, (10.63)

where g1(·) is the vector whose components are the k − r partial derivatives
of `(·) with respect to the elements of θ1.

The formula (10.38), which gives the asymptotic form of an MLE, can be
applied to the estimator θ̃ when θ2 = 0. If we partition the true parameter
vector θ0 as [θ0

1
.... 0], we find that

n1/2(θ̃1 − θ0
1)

a=
(
I11(θ0)

)−1
n−1/2g1(θ0), (10.64)

where I11(·) is the (k−r)×(k−r) top left block of the asymptotic information
matrix I(·) of the full unrestricted model. This block is, of course, just the
asymptotic information matrix for the restricted model.


