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The advantage of this estimator is that it normally involves fewer random
terms than does the empirical Hessian, and it may therefore be somewhat
more efficient in finite samples. In the case of the classical normal linear
model, to be discussed below, it is not at all difficult to obtain I(θ), and the
information matrix estimator is therefore the one that is normally used.

The third method is based on (10.31), from which we see that

I(θ0) = E
(
G>(θ0)G(θ0)

)
.

We can therefore estimate n−1I(θ0) consistently by n−1G>(θ̂)G(θ̂). The
corresponding estimator of the covariance matrix, which is usually called the
outer-product-of-the-gradient, or OPG, estimator, is

V̂arOPG(θ̂) =
(
G>(θ̂)G(θ̂)

)−1
. (10.44)

The OPG estimator has the advantage of being very easy to calculate. Unlike
the empirical Hessian, it depends solely on first derivatives. Unlike the IM
estimator, it requires no theoretical calculations. However, it tends to be less
reliable in finite samples than either of the other two. The OPG estimator is
sometimes called the BHHH estimator, because it was advocated by Berndt,
Hall, Hall, and Hausman (1974) in a very well-known paper.

In practice, the estimators (10.42), (10.43), and (10.44) are all commonly used
to estimate the covariance matrix of ML estimates, but many other estimators
are available for particular models. Often, it may be difficult to obtain I(θ),
but not difficult to obtain another matrix that approximates it asymptotically,
by starting either from the matrix −H(θ) or from the matrix G>(θ)G(θ) and
taking expectations of some elements.

A fourth covariance matrix estimator, which follows directly from (10.40), is
the sandwich estimator

V̂arS(θ̂) = H−1(θ̂)G>(θ̂)G(θ̂)H−1(θ̂). (10.45)

In normal circumstances, this estimator has little to recommend it. It is harder
to compute than the OPG estimator and can be just as unreliable in finite
samples. However, unlike the other three estimators, it is valid even when
the information matrix equality does not hold. Since this equality generally
fails to hold when the model is misspecified, it may be desirable to compute
(10.45) and compare it with the other estimators.

When an ML estimator is applied to a model which is misspecified in ways
that do not affect the consistency of the estimator, it is said to be a quasi-
ML estimator, or QMLE; see White (1982) and Gouriéroux, Monfort, and
Trognon (1984). In general, the sandwich covariance matrix estimator (10.45)
is valid for QML estimators, but the other covariance matrix estimators, which
depend on the information matrix equality, are not valid. At least, they are


