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The next step, as in Section 8.3, is to choose J so as to minimize the covariance
matrix (9.07). We may reasonably expect that, with such a choice of J, the
covariance matrix would no longer have the form of a sandwich. The simplest
choice of J that eliminates the sandwich in (9.07) is

J = (W>Ω0W )−1W>X; (9.08)

notice that, in the special case in which Ω0 is proportional to I, this expres-
sion reduces to the result (8.24) that we found in Section 8.3 as the solution
for that special case. We can see, therefore, that (9.08) is the appropriate
generalization of (8.24) when Ω is not proportional to an identity matrix.
With J defined by (9.08), the covariance matrix (9.07) becomes

plim
n→∞

(
1−
n

X>W (W>Ω0W )−1W>X
)−1

, (9.09)

and the efficient GMM estimator is

β̂GMM =
(
X>W (W>Ω0W )−1W>X

)−1
X>W (W>Ω0W )−1W>y. (9.10)

When Ω0 = σ2I, this estimator reduces to the generalized IV estimator (8.29).
In Exercise 9.1, readers are invited to show that the difference between the
covariance matrices (9.07) and (9.09) is a positive semidefinite matrix, thereby
confirming (9.08) as the optimal choice for J. The estimator β̂GMM is efficient
in the class of estimators defined by the moment conditions (9.05), but we
will see that a more efficient estimator is available if we know Ω0 and are
prepared to exploit that knowledge.

The GMM Criterion Function

With both GLS and IV estimation, we showed that the efficient estimators
could also be derived by minimizing an appropriate criterion function; this
function was (7.06) for GLS and (8.30) for IV. Similarly, the efficient GMM
estimator (9.10) minimizes the GMM criterion function

Q(β,y) ≡ (y −Xβ)>W (W>Ω0W )−1W>(y −Xβ), (9.11)

as can be seen at once by noting that the first-order conditions for minimiz-
ing (9.11) are

X>W (W>Ω0W )−1W>(y −Xβ) = 0.

If Ω0 = σ2
0I, (9.11) reduces to the IV criterion function (8.30), divided by σ2

0 .
In Section 8.6, we saw that the minimized value of the IV criterion func-
tion, divided by an estimate of σ2, serves as the statistic for the Sargan test
for overidentification. We will see in Section 9.4 that the GMM criterion
function (9.11), with the usually unknown matrix Ω0 replaced by a suitable
estimate, can also be used as a test statistic for overidentification.

The criterion function (9.11) is a quadratic form in the vector W>(y−Xβ) of
sample moments and the inverse of the matrix W>Ω0W. Equivalently, it is a
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quadratic form in n−1/2W>(y −Xβ) and the inverse of n−1W>Ω0W, since
the powers of n cancel. Under the sort of regularity conditions we have used
in earlier chapters, n−1/2W>(y −Xβ0) satisfies a central limit theorem, and
so tends, as n → ∞, to a normal random variable, with mean vector 0 and
covariance matrix the limit of n−1W>Ω0W. It follows that (9.11) evaluated
using the true β0 and the true Ω0 is asymptotically distributed as χ2 with
l degrees of freedom; recall Theorem 4.1, and see Exercise 9.2.

This property of the GMM criterion function is simply a consequence of its
structure as a quadratic form in the sample moments used for estimation and
the inverse of the asymptotic covariance matrix of these moments evaluated
at the true parameters. As we will see in Section 9.4, this property is what
makes the GMM criterion function useful for testing. The argument leading
to (9.10) shows that this same property of the GMM criterion function leads
to the asymptotic efficiency of the estimator that minimizes it.

Provided the instruments are predetermined, so that they satisfy the condition
that E(ut |Wt) = 0, we still obtain a consistent estimator, even when the
matrix J used to select linear combinations of the instruments is different
from (9.08). Such a consistent, but in general inefficient, estimator can also
be obtained by minimizing a quadratic criterion function of the form

(y −Xβ)>WΛW>(y −Xβ), (9.12)

where the weighting matrix Λ is l × l, positive definite, and must be at least
asymptotically nonrandom. Without loss of generality, Λ can be taken to be
symmetric; see Exercise 9.3. The inefficient GMM estimator is

β̂ = (X>WΛW>X)−1X>WΛW>y, (9.13)

from which it can be seen that the use of the weighting matrix Λ corresponds
to the implicit choice J = ΛW>X. For a given choice of J, there are various
possible choices of Λ that give rise to the same estimator; see Exercise 9.4.

When l = k, the model is exactly identified, and J is a nonsingular square
matrix which has no effect on the estimator. This is most easily seen by
looking at the moment conditions (9.05), which are equivalent, when l = k, to
those obtained by premultiplying them by (J>)−1. Similarly, if the estimator
is defined by minimizing a quadratic form, it does not depend on the choice
of Λ whenever l = k. To see this, consider the first-order conditions for
minimizing (9.12), which, up to a scalar factor, are

X>WΛW>(y −Xβ) = 0.

If l = k, X>W is a square matrix, and the first-order conditions can be
premultiplied by Λ−1(X>W )−1. Therefore, the estimator is the solution to
the equations W>(y − Xβ) = 0, independently of Λ. This solution is just
the simple IV estimator defined in (8.12).


