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The biases in the OLS estimates of a model like (8.10) arise because the
error terms are correlated with some of the regressors. The IV estimator
solves this problem asymptotically, because the projections of the regressors
on to S(W ) are asymptotically uncorrelated with the error terms. However,
there must always still be some correlation in finite samples, and this causes
the IV estimator to be biased.

Systems of Equations

In order to understand the finite-sample properties of the IV estimator, we
need to consider the model (8.10) as part of a system of equations. We
therefore change notation somewhat and rewrite (8.10) as

y = Zβ1 + Yβ2 + u, E(uu>) = σ2I, (8.38)

where the matrix of regressors X has been partitioned into two parts, namely,
an n× k1 matrix of exogenous and predetermined variables, Z, and an n× k2

matrix of endogenous variables, Y, and the vector β has been partitioned
conformably into two subvectors β1 and β2. There are assumed to be l ≥ k
instruments, of which k1 are the columns of the matrix Z.

The model (8.38) is not fully specified, because it says nothing about how the
matrix Y is generated. For each observation t, t = 1, . . . , n, the value yt of
the dependent variable and the values Yt of the other endogenous variables
are assumed to be determined by a set of linear simultaneous equations. The
variables in the matrix Y are called current endogenous variables, because
they are determined simultaneously, row by row, along with y. Suppose that
all the exogenous and predetermined explanatory variables in the full set of
simultaneous equations are included in the n × l instrument matrix W, of
which the first k1 columns are those of Z. Then, as can easily be seen by
analogy with the explicit result (8.09) for the demand-supply model, we have
for each endogenous variable yi, i = 0, 1, . . . , k2, that

yi = Wπi + vi, E(vti |Wt) = 0. (8.39)

Here y0 ≡ y, and the yi, for i = 1, . . . , k2, are the columns of Y. The πi are
l --vectors of unknown coefficients, the vi are n--vectors of error terms that are
innovations with respect to the instruments, vti is the tth element of vi, and
Wt is the tth row of W.

Equations like (8.39), which have only exogenous and predetermined variables
on the right-hand side, are called reduced form equations, in contrast with
equations like (8.38), which are called structural equations. Writing a model
as a set of reduced form equations emphasizes the fact that all the endogenous
variables are generated by similar mechanisms. In general, the error terms
for the various reduced form equations display contemporaneous correlation:
If vti denotes a typical element of the vector vi, then, for observation t, the
reduced form error terms vti are generally correlated among themselves and
correlated with the error term ut of the structural equation.
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A Simple Example

In order to gain additional intuition about the properties of the IV estimator in
finite samples, we consider the very simplest nontrivial example, in which the
dependent variable y is explained by only one variable, which we denote by x.
The regressor x is endogenous, and there is available exactly one exogenous
instrument, w. In order to keep the example reasonably simple, we suppose
that all the error terms, for both y and x, are normally distributed. Thus the
DGP that simultaneously determines x and y can be written as

y = xβ0 + σuu,

x = wπ0 + σvv,
(8.40)

where the second equation is analogous to (8.39). By explicitly writing σu

and σv as the standard deviations of the error terms, we can define the vectors
u and v to be multivariate standard normal, that is, distributed as N(0, I).
There is contemporaneous correlation of u and v. Therefore, E(utvt) = ρ for
some correlation coefficient ρ such that −1 < ρ < 1. The result of Exercise 4.4
shows that the expectation of ut conditional on vt is ρvt, and so we can write
u = ρv + u1, where u1 has mean zero conditional on v.

In this simple, just identified, setup, the IV estimator of the parameter β is

β̂IV = (w>x)−1w>y = β0 + σu(w>x)−1w>u. (8.41)

This expression is clearly unchanged if the instrument w is multiplied by an
arbitrary scalar, and so we can, without loss of generality, rescale w so that
w>w = 1. Then, using the second equation in (8.40), we find that

β̂IV − β0 =
σuw>u

π0 + σvw>v
=

σuw>(ρv + u1)
π0 + σvw>v

.

Let us now compute the expectation of this expression conditional on v. Since,
by construction, E(u1 |v) = 0, we obtain

E(β̂IV − β0 |v) =
ρσu

σv

z

a + z
, (8.42)

where we have made the definitions a ≡ π0/σv, and z ≡ w>v. Given our
rescaling of w, it is easy to see that z ∼ N(0, 1).

When ρ = 0, the right-hand side of equation (8.42) vanishes, and so, con-
ditional on v, β̂IV is unbiased. In fact, since v is independent of u in
this case, and w is exogenous, it follows that x is itself exogenous. With
both x and w exogenous, the IV estimator is like the estimators dealt with
in Exercise 3.17, which are unbiased conditional on these exogenous vari-
ables. If ρ 6= 0, however, x is not exogenous, and the estimator is bi-
ased conditional on v. The unconditional expectation of the estimator does
not even exist. To see this, let us try to calculate the expectation of the
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random variable z/(a + z). If the expectation existed, it would be

E
( z

a + z

)
=

∫ ∞

−∞

x

a + x
φ(x) dx, (8.43)

where, as usual, φ(·) is the density of the standard normal distribution. It is
a fairly simple calculus exercise to show that the integral in (8.43) diverges in
the neighborhood of x = −a.

If π0 = 0, then a = 0. In this extreme case, the model is not asymptotically
identified, and x = σvv is just noise, as though it were an error term. As a
consequence, w is not a valid instrument, and the IV estimator is inconsistent.

When a 6= 0, which is the usual case, the IV estimator (8.41) is neither biased
nor unbiased, because it has no expectation for any finite sample size n. This
may seem to contradict the result according to which β̂IV is asymptotically
normal, since all the moments of the normal distribution exist. However,
the fact that a sequence of random variables converges to a limiting ran-
dom variable does not necessarily imply that the moments of the variables
in the sequence converge to those of the limiting variable; see Davidson and
MacKinnon (1993, Section 4.5). The estimator (8.41) is a case in point. For-
tunately, this possible failure to converge of the moments does not extend to
the CDFs of the random variables, which do indeed converge to that of the
limit. Consequently, P values and the upper and lower limits of confidence
intervals computed with the asymptotic distribution are legitimate approxi-
mations, in the sense that they become more and more accurate as the sample
size increases.

A less simple calculation can be used to show that, in the overidentified case,
the first l − k moments of β̂IV exist; see Kinal (1980). This is consistent
with the result we have just obtained for an exactly identified model, where
l − k = 0, and the IV estimator has no moments at all. When the mean of
β̂IV exists, it is almost never equal to β0. Readers will have a much clearer
idea of the impact of the existence or nonexistence of moments, and of the
bias of the IV estimator, if they work carefully through Exercises 8.10 to 8.13,
in which they are asked to generate by simulation the EDFs of the estimator
in different situations.

The General Case

We now return to the general case, in which the structural equation (8.38)
is being estimated, and the other endogenous variables are generated by the
reduced form equations (8.39) for i = 1, . . . , k2, which correspond to the first-
stage regressions for 2SLS. We can group the vectors of fitted values from
these regressions into an n × k2 matrix PWY . The generalized IV estima-
tor is then equivalent to a simple IV estimator that uses the instruments
PWX = [Z PWY ]. By grouping the l --vectors πi, i = 1, . . . , k2 into an


