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expression (7.78). In contrast, the regression function for the restricted model,
H1, has 6 parameters: β1 through β5, and ρ. Therefore, in this example, H1

imposes just one restriction on H2.

The phenomenon illustrated in this example arises, to a greater or lesser
extent, for almost every model with common factor restrictions. Constant
terms, many types of dummy variables (notably, seasonal dummies and time
trends), lagged dependent variables, and independent variables that appear
with more than one time subscript always lead to an unrestricted model H2

with some parameters that cannot be identified. Therefore, the number of
identifiable parameters is almost always less than 2k+1, and, in consequence,
the number of restrictions is almost always less than k.

Testing Common Factor Restrictions

Any of the techniques discussed in Sections 6.7 and 6.8 can be used to test
common factor restrictions. In practice, if the error terms are believed to be
homoskedastic, the easiest approach is probably to use an asymptotic F test.
For the example of equations (7.73) and (7.74), the restricted sum of squared
residuals, RSSR, is obtained from NLS estimation of H1, and the unrestricted
one, USSR, is obtained from OLS estimation of H2. Then the test statistic is

(RSSR−USSR)/r

USSR/(n− k − r − 2)
a∼ F (r, n− k − r − 2), (7.80)

where r (≤ k) is the number of restrictions. The number of degrees of freedom
in the denominator reflects the fact that the unrestricted model has k + r + 1
parameters and is estimated using the n− 1 observations for t = 2, . . . , n.

Of course, since both the null and alternative models involve lagged dependent
variables, the test statistic (7.80) does not actually follow the F (r, n−k−r−2)
distribution in finite samples. Therefore, when the sample size is not large,
it is a good idea to bootstrap the test. As Davidson and MacKinnon (1999a)
have shown, highly reliable P values may be obtained in this way, even for
very small sample sizes. The bootstrap samples are generated recursively from
the restricted model, H1, using the NLS estimates of that model. As with
bootstrap tests for serial correlation, the bootstrap error terms may either be
drawn from the normal distribution or obtained by resampling the rescaled
NLS residuals; see the discussion in Sections 4.6 and 7.7.

Although this bootstrap procedure is conceptually simple, it may be quite
expensive to compute, because the nonlinear model (7.73) must be estimated
for every bootstrap sample. It may therefore be more attractive to follow the
idea in Exercises 6.17 and 6.18 by bootstrapping a GNR-based test statistic
that requires no nonlinear estimation at all. For the H1 model (7.73), the
corresponding GNR is (7.63), but now we wish to evaluate it, not at the NLS
estimates from (7.73), but at the estimates β́ and ρ́ obtained by estimating
the linear H2 model (7.74). These estimates are root-n consistent under H2,


