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regression (7.45), we either need to drop the first p observations or replace
the unobserved lagged values of ũt with zeros.

If we wish to test against an MA(q) process, it turns out that we can proceed
exactly as if we were testing against an AR(q) process. The reason is that an
autoregressive process of any order is locally equivalent to a moving-average
process of the same order. Intuitively, this means that, for large samples, an
AR(q) process and an MA(q) process look the same in the neighborhood of
the null hypothesis of no serial correlation. Since tests based on the GNR
use information on first derivatives only, it should not be surprising that the
GNRs used for testing against both alternatives turn out to be identical; see
Exercise 7.7.

The use of the GNR (7.43) for testing against AR(1) errors was first suggested
by Durbin (1970). Breusch (1978) and Godfrey (1978a, 1978b) subsequently
showed how to use GNRs to test against AR(p) and MA(q) errors. For a more
detailed treatment of these and related procedures, see Godfrey (1988).

Older, Less Widely Applicable, Tests

Readers should be warned at once that the tests we are about to discuss are
not recommended for general use. However, they still appear often enough in
current literature and in current econometrics software for it to be necessary
that practicing econometricians be familiar with them. Besides, studying
them reveals some interesting aspects of models with serially correlated errors.

To begin with, consider the simple regression

ũt = bρũt−1 + residual, t = 1, . . . , n, (7.46)

where, as above, the ũt are the residuals from regression (7.42). In order to
be able to keep the first observation, we assume that ũ0 = 0. This regression
yields an estimate of bρ, which we will call ρ̃ because it is an estimate of ρ
based on the residuals under the null. Explicitly, we have
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n−1
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, (7.47)

where we have divided numerator and denominator by n for the purposes
of the asymptotic analysis to follow. It turns out that, if the explanatory
variables X in (7.42) are all exogenous, then ρ̃ is a consistent estimator of the
parameter ρ in model (7.40), or, equivalently, (7.41), where it is not assumed
that ρ = 0. This slightly surprising result depends crucially on the assumption
of exogenous regressors. If one of the variables in X is a lagged dependent
variable, the result no longer holds.

Asymptotically, it makes no difference if we replace the sum in the denomina-
tor by n−1

∑n
t=1 ũ2

t , because we are effectively just replacing the term ũ2
0 by

the term ũ2
n. Then we can write the denominator of (7.47) as n−1u>MXu,


