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where P0 and P1 are the projections complementary to M0 and M1. By the
result of Exercise 2.18, P1 − P0 is an orthogonal projection matrix, which
projects on to a space of dimension k−k1 = k2. Thus the numerator of (6.70)
is asymptotically σ2

0 times a χ2 variable with k2 degrees of freedom, divided
by r = k2; recall Exercise 4.13. The denominator of (6.70) is just a consistent
estimate of σ2

0 , and so, under H0, the statistic (6.70) itself is asymptotically
distributed as F (k2,∞) = χ2(k2)/k2.

For linear models, we saw in Section 5.4 that the F statistic could be written
as (5.26), which is a special case of the more general form (5.23). Not surpris-
ingly, it is also possible to calculate test statistics of the form (5.23) to test
the hypothesis that β2 = 0 in the nonlinear model (6.69). This type of test
statistic is often called a Wald statistic, because the approach was suggested
by Wald (1943). It can be written as

Wβ2 ≡ β̂2
>(V̂ar(β̂2)

)−1
β̂2, (6.71)

where β̂2 is a vector of NLS estimates from the unrestricted model (6.69), and
V̂ar(β̂2) is the NLS estimate of its covariance matrix. This is just a quadratic
form in the vector β̂2 and the inverse of an estimate of its covariance matrix.
When k2 = 1, the signed square root of (6.71) is equivalent to a t statistic.
We will see below that the Wald statistic (6.71) is asymptotically equivalent
to the F statistic (6.70), except for the factor of 1/k2.

Tests Based on the Gauss-Newton Regression

Since the GNR provides a one-step estimator asymptotically equivalent to the
NLS estimator, and it also provides the NLS estimate of the covariance matrix
of β̂2, a statistic asymptotically equivalent to (6.71) can be computed by
means of a GNR. This statistic also turns out to be asymptotically equivalent
to the F statistic (6.70), except for the factor of 1/k2.

The Gauss-Newton regression corresponding to the model (6.69) is

y − x(β1, β2) = X1(β1,β2)b1 + X2(β1, β2)b2 + residuals, (6.72)

where the vector of artificial parameters b has been partitioned as [b1
.... b2],

conformably with the partition of X(β). If the GNR is to be used to test the
null hypothesis that β2 = 0, the regressand and regressors must be evaluated
at parameter estimates which satisfy the null. We will suppose that they are
evaluated at the point β́ ≡ [β́1,0], where β́1 may be any root-n consistent
estimator of β1. Then the one-step estimator of β can be written as

β́ + b́ =

[
β́1 + b́1

b́2

]
. (6.73)

By the results of Section 6.6, n1/2b́2 is asymptotically equivalent to n1/2β̂2

under the null, where β̂2 is the NLS estimator of β2 from (6.69).
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In practice, the two estimators that are most likely to be used for β́1 are β̃1,
the restricted NLS estimator, and β̂1, a subvector of the unrestricted NLS
estimator. Here we are once more adopting the convention, previously used
in Chapter 4, whereby a tilde denotes restricted estimates and a hat denotes
unrestricted ones. Both these estimators are root-n consistent under the null
hypothesis, but β̃1 is generally more efficient than β̂1. Whether we want to
use β̃1, β̂1, or some other root-n consistent estimator when performing GNR-
based tests depends on how difficult the various estimators are to compute
and on the finite-sample properties of the test statistics that result from the
various choices.

Now consider the vector of residuals ú from OLS estimation of the GNR (6.72)
evaluated at β́, when the true DGP is characterized by the parameter vector
β0 ≡ [β0

1
.... 0]. Under the null, we have

ú = y − x(β́1,0)− X́1b́1 − X́2 b́2

= y − x(β0
1 ,0)−X1(β̄)(β́1 − β0

1)− X́1b́1 − X́2 b́2

a= u− X́1(β́1 + b́1 − β0
1)− X́2 b́2. (6.74)

Here, β̄ is a parameter vector between β0 and β́. To obtain the asymptotic
equality in the last line, we have used the fact that X1(β̄) a= X́1. The one-
step estimator (6.73) is consistent, and so the last two terms in (6.74) tend to
zero as n → ∞. Thus the residuals út are asymptotically equal to the error
terms ut, and so n−1ú>ú is asymptotically equal to σ2

0 , the true error variance.
In fact, because of the asymptotic equivalence of the one-step estimator β̀ and
the NLS estimator β̂, (6.74) tells us that ú

a= u− X́(β̂ − β0). An argument
like that of (6.40) then shows that ú is asymptotically equivalent to MX0u.
For the moment, however, we do not need this more refined result.

The GNR (6.72) evaluated at β́ is

y − x́ = X́1b1 + X́2b2 + residuals. (6.75)

Since this is a linear regression, we can apply the FWL Theorem to it. Writing
MX́1 for the projection on to S⊥(X́1), we see that the FWL regression can
be written as

MX́1(y − x́) = MX́1X́2b2 + residuals.

This FWL regression yields the same estimates b́2 as does (6.75). Thus,
inserting the factors of powers of n that are needed for asymptotic analysis,
we find that

n1/2 b́2 = (n−1X́2
>MX́1X́2)−1n−1/2X́2

>MX́1(y − x́). (6.76)

In addition to yielding the same parameter estimates b́2, the FWL regression
has the same residuals as regression (6.75) and the same estimated covariance
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matrix for b́2. The latter is σ́2(X́2
>MX́1X́2)−1, where σ́2 is the error variance

estimator from (6.75), which, as we just saw, is asymptotically equal to σ2
0 .

If X1 and X2 denote X1(β0) and X2(β0), respectively, we see that

n−1X́2
>MX́1X́2 = n−1X́2

>X́2 − n−1X́2
>X́1(n−1X́1

>X́1)−1n−1X́1
>X́2

a= n−1X2
>X2 − n−1X2

>X1(n−1X1
>X1)−1n−1X1

>X2

= n−1X2
>MX1X2,

where the asymptotic equality follows, as usual, from the consistency of β́.
Thus n times the covariance matrix estimator for b́2 given by the GNR (6.75)
provides a consistent estimate of the asymptotic covariance matrix of the
vector n1/2(β̂2 − β0

2), as would be given by the lower right block of (6.31) if
that matrix were partitioned appropriately.

The Wald test statistic (6.71) can be rewritten as

n1/2β̂2
>(nV̂ar(β̂2)

)−1
n1/2β̂2. (6.77)

Under the null, this is asymptotically equivalent to the statistic

1
σ́2

n1/2 b́2
>(n−1X́2

>MX́1X́2)n1/2b́2, (6.78)

which is based entirely on quantities from the GNR (6.75). That (6.77) and
(6.78) are asymptotically equal relies on (6.76) and the fact, which we have
just shown, that the covariance matrix estimator for b́2 is also valid for β̂2.

By equation (6.76), the GNR-based statistic (6.78) can also be expressed as

1
σ́2

n−1/2(y − x́)>MX́1X́2(n−1X́2
>MX́1X́2)−1n−1/2X́2

>MX́1(y − x́). (6.79)

When this statistic is divided by r = k2, we can see by comparison with (4.33)
that it is precisely the F statistic for a test of the artificial hypothesis that
b2 = 0 in the GNR (6.75). In particular, σ́2 is just the sum of squared
residuals from equation (6.75), divided by n − k. Thus a valid test statistic
can be computed as an ordinary F statistic using the sums of squared residuals
from the “restricted” and “unrestricted” GNRs,

GNR0 : y − x́ = X́1b1 + residuals, and (6.80)

GNR1 : y − x́ = X́1b1 + X́2b2 + residuals. (6.81)

In Exercise 6.9, readers are invited to show that such an F statistic is asymp-
totically equivalent to the F statistic computed from the sums of squared
residuals from the two nonlinear regressions (6.68) and (6.69).


