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Euclidean length of MZx must be smaller (or at least, no larger) than the
Euclidean length of x; recall (2.27). Thus x>MZx ≤ x>x, which implies that

σ2
0(x>MZx)−1 ≥ σ2

0(x>x)−1. (3.57)

The inequality in (3.57) almost always holds strictly. The only exception is
the special case in which x lies in S⊥(Z), which implies that the regression of
x on Z has no explanatory power at all.

In general, we wish to show that Var(β̃)−Var(β̂) is a positive semidefinite
matrix. As we saw in Section 3.5, this is equivalent to showing that the matrix
Var(β̂)−1 −Var(β̃)−1 is positive semidefinite. A little algebra shows that

X>X −X>MZX = X>(I−MZ)X

= X>PZX

= (PZX)>PZX.

(3.58)

Since X>X−X>MZX can be written as the transpose of a matrix times itself,
it must be positive semidefinite. Dividing by σ2

0 gives the desired result.

We have established that the OLS estimator of β in the overspecified regres-
sion model (3.51) is at most as efficient as the OLS estimator in the restricted
model (3.55), provided the restrictions are true. Therefore, adding additional
variables that do not really belong in a model normally leads to less accurate
estimates. Only in certain very special cases is there no loss of efficiency.
In such cases, the covariance matrices of β̃ and β̂ must be the same, which
implies that the matrix difference computed in (3.58) must be zero.

The last expression in (3.58) must be a zero matrix whenever PZX = O. This
condition holds whenever the two sets of regressors X and Z are mutually
orthogonal, so that Z>X = O. In this special case, β̃ is just as efficient
as β̂. In general, however, including regressors that do not belong in a model
increases the variance of the estimates of the coefficients on the regressors that
do belong, and the increase can be very great in many cases. As can be seen
from the left-hand side of (3.57), the variance of the estimated coefficient β̃
associated with any regressor x is proportional to the inverse of the SSR from
a regression of x on all the other regressors. The more other regressors there
are, whether they truly belong in the model or not, the smaller is this SSR.

Underspecification

The opposite of overspecification is underspecification, in which we omit some
variables that actually do appear in the DGP. To avoid any new notation, let
us suppose that the model we estimate is (3.55), which yields the estimator β̂,
but that the DGP is really

y = Xβ0 + Zγ0 + u, u ∼ IID(0, σ2
0I). (3.59)


