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has mean zero and is uncorrelated with β̂. The random component simply
adds noise to the efficient estimator β̂. This makes it clear that β̂ is more
efficient than β̃. To complete the proof, we note that

Var(β̃) = Var
(
β̂ + (β̃ − β̂)

)

= Var
(
β̂ + Cy

)

= Var(β̂) + Var(Cy),

(3.41)

because, from (3.40), the covariance of β̂ and Cy is zero. Thus the difference
between Var(β̃) and Var(β̂) is Var(Cy). Since it is a covariance matrix, this
difference is necessarily positive semidefinite.

We will encounter many cases in which an inefficient estimator is equal to
an efficient estimator plus a random variable that has mean zero and is un-
correlated with the efficient estimator. The zero correlation ensures that the
covariance matrix of the inefficient estimator is equal to the covariance matrix
of the efficient estimator plus another matrix that is positive semidefinite, as
in the last line of (3.41). If the correlation were not zero, this sort of proof
would not work. Observe that, because everything is done in terms of second
moments, the Gauss-Markov Theorem does not require any assumption about
the normality of the error terms.

The Gauss-Markov Theorem that the OLS estimator is BLUE is one of the
most famous results in statistics. However, it is important to keep in mind
the limitations of this theorem. The theorem applies only to a correctly spec-
ified model with exogenous regressors and error terms that are homoskedastic
and serially uncorrelated. Moreover, it does not say that the OLS estimator
β̂ is more efficient than every imaginable estimator. Estimators which are
nonlinear and/or biased may well perform better than ordinary least squares.

3.6 Residuals and Error Terms

The vector of least-squares residuals, û ≡ y−Xβ̂, is easily calculated once we
have obtained β̂. The numerical properties of û were discussed in Section 2.3.
These properties include the fact that û is orthogonal to Xβ̂ and to every
vector that lies in S(X). In this section, we turn our attention to the statistical
properties of û as an estimator of u. These properties are very important,
because we will want to use û for a number of purposes. In particular, we
will want to use it to estimate σ2, the variance of the error terms. We need
an estimate of σ2 if we are to obtain an estimate of the covariance matrix
of β̂. As we will see in later chapters, the residuals can also be used to test
some of the strong assumptions that are often made about the distribution
of the error terms and to implement more sophisticated estimation methods
that require weaker assumptions.


