E(\eta(x)) \neq \eta(E(x)). Thus, it is often very easy to calculate plims in circumstances where it would be difficult or impossible to calculate expectations.

However, working with plims can be a little bit tricky. The problem is that many of the stochastic quantities we encounter in econometrics do not have probability limits unless we divide them by \(n \) or, perhaps, by some power of \(n \).

For example, consider the matrix \(X'X \), which appears in the formula (3.04) for \(\hat{\beta} \). Each element of this matrix is a scalar product of two of the columns of \(X \), that is, two \(n \)-vectors. Thus it is a sum of \(n \) numbers. As \(n \to \infty \), we would expect that, in most circumstances, such a sum would tend to infinity as well. Therefore, the matrix \(X'X \) does not generally have a plim. However, it is not at all unreasonable to assume that

\[
\lim_{n \to \infty} \frac{1}{n} X'X = S_{X'X},
\]

where \(S_{X'X} \) is a finite nonstochastic matrix with full rank \(k \), because each element of the matrix on the left-hand side of equation (3.17) is now an average of \(n \) numbers:

\[
\left(\frac{1}{n} X'X \right)_{ij} = \frac{1}{n} \sum_{t=1}^{n} x_{ti}x_{tj}.
\]

In effect, when we write (3.17), we are implicitly making some assumption sufficient for a LLN to hold for the sequences generated by the squares of the regressors and their cross-products. Thus there should not be too much dependence between \(x_{ti}x_{tj} \) and \(x_{si}x_{sj} \) for \(s \neq t \), and the variances of these quantities should not differ too much as \(t \) and \(s \) vary.

The OLS Estimator Is Consistent

We can now show that, under plausible assumptions, the least-squares estimator \(\hat{\beta} \) is consistent. When the DGP is a special case of the regression model (3.03) that is being estimated, we saw in (3.05) that

\[
\hat{\beta} = \beta_0 + (X'X)^{-1}X'u.
\]

To demonstrate that \(\hat{\beta} \) is consistent, we need to show that the second term on the right-hand side here has a plim of zero. This term is the product of two matrix expressions, \((X'X)^{-1}\) and \(X'u\). Neither \(X'X \) nor \(X'u \) has a probability limit. However, we can divide both of these expressions by \(n \) without changing the value of this term, since \(n \cdot n^{-1} = 1 \). By doing so, we convert them into quantities that, under reasonable assumptions, have nonstochastic plims. Thus the plim of the second term in (3.18) becomes

\[
\left(\lim_{n \to \infty} \frac{1}{n} X'X \right)^{-1} \lim_{n \to \infty} \frac{1}{n} X'u = (S_{X'X})^{-1} \lim_{n \to \infty} \frac{1}{n} X'u = 0.
\]